Sur les fonctions de hachage cryptographiques basées sur des graphes

On graph-based cryptographic hash functions

Christophe Petit

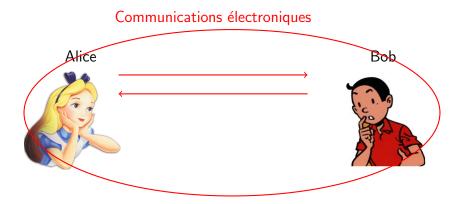
Cryptographie

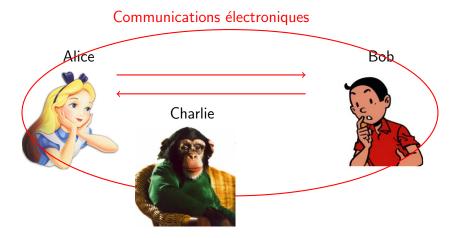
- Pour les espions, mais aussi
 - email
 - gsm
 - e-virements
 - ► e-health
 - **...**

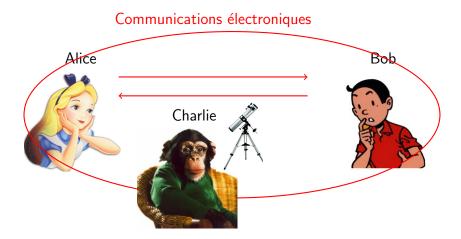
Alice

Alice

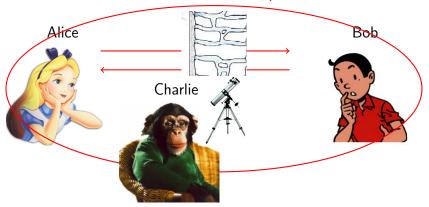
Bob



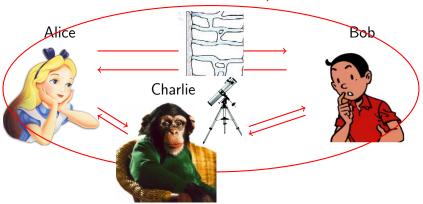




Communications électroniques



Communications électroniques



- Utilisées partout en crypto pour garantir
 - Intégrité
 - Authenticité
 - Confidentialité

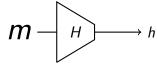
- Utilisées partout en crypto pour garantir
 - Intégrité
 - Authenticité
 - Confidentialité

via MACs, signatures, dérivation de clés, stockage de mots de passe, certains schémas de chiffrement,...

- Utilisées partout en crypto pour garantir
 - ► Intégrité
 - Authenticité
 - Confidentialité

via MACs, signatures, dérivation de clés, stockage de mots de passe, certains schémas de chiffrement,...

Compressent leurs entrées



Fonctions de hachage basées sur des graphes

 Importante structure mathématique basée sur (certains) graphes

Fonction de hachage classique

Fonctions de hachage basées sur des graphes

 Importante structure mathématique basée sur (certains) graphes

Fonction de hachage classique

Fonction de hachage basée sur un graphe

Plan de l'exposé

- ▶ Introduction
- Motivations
- Construction et attaques génériques
- Quelques résultats de la thèse
- Conclusion

Plan de l'exposé

- Introduction
- Motivations
- Construction et attaques génériques
- Quelques résultats de la thèse
- Conclusion

- Besoin d'authentifier
 - ► Le message
 - ► L'expéditeur

- Besoin d'authentifier
 - ▶ Le message
 - ► L'expéditeur
- Deux solutions classiques:
 - Signatures
 - MACs

- Besoin d'authentifier
 - ▶ Le message
 - ▶ L'expéditeur
- Deux solutions classiques:
 - ▶ **Signatures** à partir d'un secret possédé par Alice
 - MACs

- Besoin d'authentifier
 - ▶ Le message
 - ▶ L'expéditeur
- Deux solutions classiques:
 - Signatures à partir d'un secret possédé par Alice
 - ► MACs à partir d'un secret partagé par Alice et Bob

► Alice et Bob ont une **clé secrète** *s* et utilisent un MAC:

Alice calcule

▶ Alice et Bob ont une **clé secrète** *s* et utilisent un MAC:

- ► Alice calcule
- Alice envoie le résultat avec le message

▶ Alice et Bob ont une **clé secrète** *s* et utilisent un MAC:

- Alice calcule
- Alice envoie le résultat avec le message
- Quand il reçoit un message, Bob recalcule le résultat et compare

Alice et Bob ont une clé secrète s et utilisent un MAC:

- Alice calcule
- Alice envoie le résultat avec le message
- Quand il reçoit un message, Bob recalcule le résultat et compare
- Intuition: même si Charlie peut modifier le message, il ne peut pas calculer un MAC valide car il ne connaît pas s

Alice et Bob ont une clé secrète s et utilisent un MAC:

- Alice calcule
- Alice envoie le résultat avec le message
- Quand il reçoit un message, Bob recalcule le résultat et compare
- ▶ Intuition: même si Charlie peut modifier le message, il ne peut pas calculer un MAC valide car il ne connaît pas s
- Souvent construits à partir de fonctions de hachage

Solution 2: Signatures digitales

- Alice a une clé privée à laquelle correspond une autre clé, publique
 - Alice signe le message avec sa clé privée
 - ▶ Elle envoie la signature avec le message
 - ► Tout le monde peut vérifier la signature avec la clé publique

Solution 2: Signatures digitales

- Alice a une clé privée à laquelle correspond une autre clé, publique
 - Alice signe le message avec sa clé privée
 - ▶ Elle envoie la signature avec le message
 - ► Tout le monde peut vérifier la signature avec la clé publique
- Intuition: impossible de produire de fausses signatures

Signatures digitales

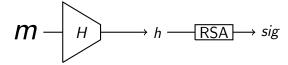
+ Il existe de bons algorithmes de signature (ex. RSA)

Signatures digitales

- + Il existe de bons algorithmes de signature (ex. RSA)
- Tels quels, ces algorithmes sont
 - trop lents pour de longs messages
 - vulnérables à des attaques simples exploitant leur structure mathématique

Signatures digitales

- + Il existe de bons algorithmes de signature (ex. RSA)
- Tels quels, ces algorithmes sont
 - trop lents pour de longs messages
 - vulnérables à des attaques simples exploitant leur structure mathématique
- Solution: "hash-then-sign paradigm"



- MACs
- Signatures digitales

- MACs
- Signatures digitales
- Stockage de mots de passe

- MACs
- Signatures digitales
- Stockage de mots de passe
- Generation de nombres pseudo-aléatoires

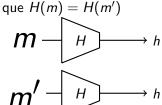
- MACs
- Signatures digitales
- Stockage de mots de passe
- Generation de nombres pseudo-aléatoires
- Extraction d'entropie

- MACs
- Signatures digitales
- Stockage de mots de passe
- Generation de nombres pseudo-aléatoires
- Extraction d'entropie
- Techniques de dérivations de clés

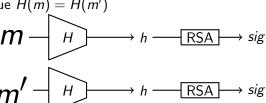
- MACs
- Signatures digitales
- Stockage de mots de passe
- Generation de nombres pseudo-aléatoires
- Extraction d'entropie
- Techniques de dérivations de clés

- MACs
- Signatures digitales
- Stockage de mots de passe
- Generation de nombres pseudo-aléatoires
- Extraction d'entropie
- Techniques de dérivations de clés

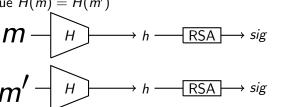
- Propriétés principales:
 - ▶ **Résistance aux collisions:** "dur" de calculer *m*, *m* tels



- Propriétés principales:
 - ▶ Résistance aux collisions: "dur" de calculer m, m' tels que H(m) = H(m')



- Propriétés principales:
 - ▶ **Résistance aux collisions:** "dur" de calculer m, m' tels que H(m) = H(m')



▶ Résistance aux préimages: étant donné la valeur H(m) pour un certain m, "dur" de trouver m' tel que H(m) = H(m')

- Propriétés principales:
 - ▶ **Résistance à la seconde préimage:** étant donné *m*, "dur" de trouver $m' \neq m$ tel que H(m) = H(m')

- Propriétés principales:
 - ▶ **Résistance à la seconde préimage:** étant donné *m*, "dur" de trouver $m' \neq m$ tel que H(m) = H(m')
 - ▶ **Compression:** $H: \{0,1\}^* \to \{0,1\}^{\lambda}$ $m - H \longrightarrow h$ $(\lambda \approx 160 \text{ en pratique})$

- Propriétés principales:
 - ▶ **Résistance à la seconde préimage:** étant donné *m*, "dur" de trouver $m' \neq m$ tel que H(m) = H(m')
 - ▶ **Compression:** $H: \{0,1\}^* \to \{0,1\}^{\lambda}$ $m - H \longrightarrow h$ ($\lambda \approx 160$ en pratique)

Distribution presque uniforme en sortie

- Autres propriétés:
 - XOR résistance
 - ADD résistance
 - Non-multiplicativité
 - "Oracle aléatoire"

Comment "prouver" qu'on a ces propriétés?

► En crypto, on prouve la **sécurité par réductions: si** une certaine propriété du système n'est pas vérifiée, **alors** on peut résoudre un certain problème "difficile"

Comment "prouver" qu'on a ces propriétés?

- En crypto, on prouve la sécurité par réductions: si une certaine propriété du système n'est pas vérifiée, alors on peut résoudre un certain problème "difficile"
- La sécurité de l'algorithme est déduite de la difficulté de casser certaines briques de base
 - problèmes mathématiques (IFP, DLP, ECDLP,...)
 - autres algorithmes crypto (AES, SHA,...)

Comment "prouver" qu'on a ces propriétés?

- En crypto, on prouve la sécurité par réductions: si une certaine propriété du système n'est pas vérifiée, alors on peut résoudre un certain problème "difficile"
- La sécurité de l'algorithme est déduite de la difficulté de casser certaines briques de base
 - problèmes mathématiques (IFP, DLP, ECDLP,...)
 - autres algorithmes crypto (AES, SHA,...)
- Design et évaluation réduits

▶ Problèmes mathématiques: structure claire

► AES, SHA: structure complexe

- Problèmes mathématiques: structure claire
 - Plus facile à casser a priori
 - + Meilleure confiance si résistance
 - + (Certains) bien étudiés, même hors crypto
 - + Faciles à maintenir
 - Ne peut pas tout prouver, autres faiblesses
- ► AES, SHA: structure complexe

- Problèmes mathématiques: structure claire
 - Plus facile à casser a priori
 - + Meilleure confiance si résistance
 - + (Certains) bien étudiés, même hors crypto
 - + Faciles à maintenir
 - Ne peut pas tout prouver, autres faiblesses
- ► AES, SHA: structure complexe
 - + "Fonctions aléatoires", pas de faiblesse apparente
 - → utiles comme couteaux suisses
 - ± Certains sont très bien étudiés (dans leur contexte initial)
 - Durs à maintenir
 - Structure mal comprise: faiblesses inconnues ?
 - + Souvent plus rapides

Fonctions de hachage basées sur des graphes

SHA & fonctions de hachage classiques: sécurité basée sur des arguments heuristiques

Fonctions de hachage basées sur des graphes

SHA & fonctions de hachage classiques: sécurité basée sur des arguments heuristiques

Fonctions de hachage basées sur des graphes: résistance aux collisions dépend de problèmes mathématiques

But et résultats de la thèse: étude des fonctions de hachage basées sur des graphes

Sécurité

- Sécurité du design en général
- Sécurité des constructions particulières
- Malléabilité

Ch.4

Ch.5,6,7,D

Ch.8

But et résultats de la thèse: étude des fonctions de hachage basées sur des graphes

Sécurité

 Sécurité du design en général 	Ch.4
 Sécurité des constructions particulières 	Ch.5,6,7,D
► Malléabilité	Ch.8

Efficacité

•	Efficacité hardware et software des différentes	
	constructions	Ch.4,7,9
•	Algorithmes améliorés	Ch.4,9,C
•	Parallélisme	Ch.4,8,9

But et résultats de la thèse: étude des fonctions de hachage basées sur des graphes

Sécurité

•	Sécurité du design en général	Ch.4
•	Sécurité des constructions particulières	Ch.5,6,7,D
•	Malléabilité	Ch.8

Efficacité

	Lineacite nardware et software des differentes	
	constructions	Ch.4,7,9
•	Algorithmes améliorés	Ch.4,9,C

Ffficacité hardware et software des différentes

Applications

Parallélisme

	Modelisation et utilisation de la maileabilite	CII.0
•	Suppression de la malléabilité	Ch 9

Ch.4.8.9

CL O

Plan de l'exposé

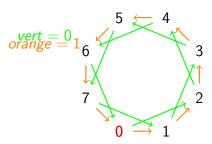
- Introduction
- Motivations
- Construction et attaques génériques
- Quelques résultats de la thèse
- Conclusion

▶ Intuition: à partir d'un graphe k-régulier (dirigé),

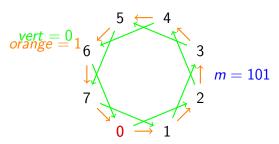
Intuition: à partir d'un graphe k-régulier (dirigé), le message m est écrit en base k: $m = m_1 m_2 ... m_u$

Intuition: à partir d'un graphe k-régulier (dirigé), le message m est écrit en base k: $m = m_1 m_2 ... m_{\mu}$ et les m_i fixent un chemin dans le graphe

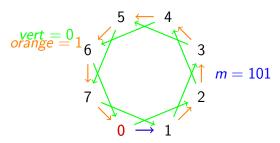
- Intuition: à partir d'un graphe k-régulier (dirigé), le message m est écrit en base k: $m = m_1 m_2 ... m_{\mu}$ et les m_i fixent un chemin dans le graphe
- ► Colorier les arêtes avec k couleurs associées à 0, ..., k-1, choisir un sommet initial



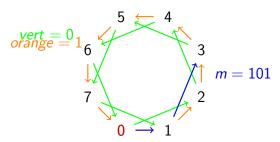
- ▶ Intuition: à partir d'un graphe k-régulier (dirigé), le message m est écrit en base k: $m = m_1 m_2 ... m_{\mu}$ et les m_i fixent un chemin dans le graphe
- ▶ Colorier les arêtes avec k couleurs associées à 0, ..., k 1, choisir un sommet initial



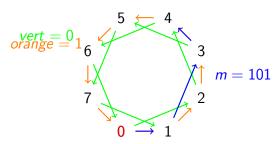
- ▶ Intuition: à partir d'un graphe k-régulier (dirigé), le message m est écrit en base k: $m = m_1 m_2 ... m_{\mu}$ et les m_i fixent un chemin dans le graphe
- ▶ Colorier les arêtes avec k couleurs associées à 0, ..., k 1, choisir un sommet initial



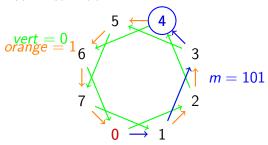
- Intuition: à partir d'un graphe k-régulier (dirigé), le message m est écrit en base k: $m = m_1 m_2 ... m_{\mu}$ et les m_i fixent un chemin dans le graphe
- ► Colorier les arêtes avec k couleurs associées à 0, ..., k-1, choisir un sommet initial



- ▶ Intuition: à partir d'un graphe k-régulier (dirigé), le message m est écrit en base k: $m = m_1 m_2 ... m_{\mu}$ et les m_i fixent un chemin dans le graphe
- ▶ Colorier les arêtes avec k couleurs associées à 0, ..., k 1, choisir un sommet initial

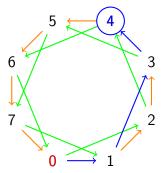


- ▶ Intuition: à partir d'un graphe k-régulier (dirigé), le message m est écrit en base k: $m = m_1 m_2 ... m_{\mu}$ et les m_i fixent un chemin dans le graphe
- ▶ Colorier les arêtes avec k couleurs associées à 0, ..., k 1, choisir un sommet initial



Collisions et préimages

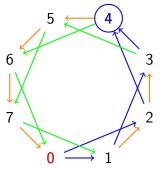
▶ Trouver une *préimage* revient à trouver *un chemin* de l'origine vers le sommet donné



(En crypto, $> 2^{160}$ sommets)

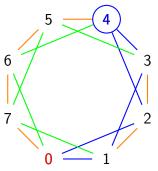
Collisions et préimages

► Trouver une *collision* revient à trouver *deux chemins* partant à l'origine et finissant au même sommet



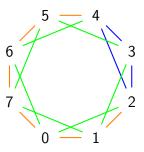
Collisions et préimages

► Si le graphe est non dirigé, cela revient à trouver un *cycle* passant par l'origine



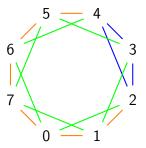
Maille

ightharpoonup pprox taille du plus petit cycle



Maille

ightharpoonup pprox taille du plus petit cycle



▶ Donne la plus petite "distance" entre toute paire de collisions

Expansion

► Graphe d'expansion ≈ graphe avec très peu d'arêtes mais très bien connecté "Réseau social efficace pour propager des ragots"

Expansion

- ► Graphe d'expansion ≈ graphe avec très peu d'arêtes mais très bien connecté "Réseau social efficace pour propager des ragots"
- ► Messages aléatoires de taille fixée: distribution des hachés → distribution uniforme quand taille /

Expansion

- Graphe d'expansion \approx graphe avec très peu d'arêtes mais très bien connecté "Réseau social efficace pour propager des ragots"
- Messages aléatoires de taille fixée: distribution des hachés → distribution uniforme quand taille /
- Convergence rapide ssi "grand" paramètre d'expansion

Fonctions de hachage basées sur des graphes: propriétés de sécurité

fonction	graphe	
collisions	cycle/	
	double chemin	
préimage	chemin	
distribution des hachés	expansion	
"distance" mini-	maille	
male de collision		

Graphe de Cayley

▶ Groupe: ensemble *G* avec une loi interne

$$\cdot: G \times G \rightarrow G$$

élement neutre, inverse, associativité

Graphe de Cayley

▶ Groupe: ensemble *G* avec une loi interne

$$\cdot: G \times G \rightarrow G$$

élement neutre, inverse, associativité

- ▶ Graphe de Cayley $C_{G,S} = (V, E)$: pour un *groupe* G et $S \subset G$,
 - ▶ un sommet v_g pour chaque $g \in G$
 - ▶ une arête (v_{g_1}, v_{g_2}) ssi $\exists s \in S$ tel que $g_2 = g_1 \cdot s$

Graphe de Cayley

▶ Groupe: ensemble *G* avec une loi interne

$$\cdot: G \times G \rightarrow G$$

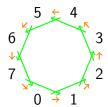
élement neutre, inverse, associativité

- Graphe de Cayley $C_{G,S} = (V, E)$: pour un *groupe* G et $S \subset G$,
 - un sommet v_g pour chaque $g \in G$
 - ▶ une arête (v_{g_1}, v_{g_2}) ssi $\exists s \in S$ tel que $g_2 = g_1 \cdot s$

Exemple:
$$G = (\mathbb{Z}/8\mathbb{Z})$$

$$G = (\mathbb{Z}/8\mathbb{Z}, +),$$

$$S = \{1, 2\}$$



Fonctions de hachage Cayley

 Utilise des graphes de Cayley Exemple pour $S = \{s_0, s_1\}$ et sommet d'origine 1:

$$H(11001) = s_1 \cdot s_1 \cdot s_0 \cdot s_0 \cdot s_1$$

Fonctions de hachage Cayley

 Utilise des graphes de Cayley Exemple pour $S = \{s_0, s_1\}$ et sommet d'origine 1:

$$H(11001) = s_1 \cdot s_1 \cdot s_0 \cdot s_0 \cdot s_1$$

- Simplifie la définition et l'étude
- ▶ Parallélisme: $H(m_1||m_2) = H(m_1) \cdot H(m_2)$

Fonctions de hachage Cayley: propriétés de sécurité

fonction	graphe	groupe
collisions	cycle/	représentation/
	double chemin	bi-factorisation
préimage	chemin	factorisation dans
		le groupe
distribution des	expansion	constante de
hachés		Kazhdan
"distance" mini-	maille	
male de collision		

Problème de représentation

▶ Etant donné un groupe G et $S = \{s_1, ... s_k\} \subset G$, trouver un produit

$$\prod_{1 \leq i \leq \mathcal{N}} s^{\mathsf{e}_i}_{ heta(i)} = 1$$

satisfaisant quelques contraintes supplémentaires

Problème de représentation

▶ Etant donné un groupe G et $S = \{s_1, ... s_k\} \subset G$, trouver un produit

$$\prod_{1 \leq i \leq \mathcal{N}} s^{\mathsf{e}_i}_{ heta(i)} = 1$$

satisfaisant quelques contraintes supplémentaires

- Remplacer 1 par un autre élément du groupe
 - → problème de factorisation

Problème de représentation

▶ Etant donné un groupe G et $S = \{s_1, ... s_k\} \subset G$, trouver un produit

$$\prod_{1 \leq i \leq \mathcal{N}} s^{\mathsf{e}_i}_{ heta(i)} = 1$$

satisfaisant quelques contraintes supplémentaires

- Remplacer 1 par un autre élément du groupe → problème de factorisation
- ▶ Difficulté dépend très fort de G et S!

- Recherche exhaustive en temps 2^{λ}
- Attaque des anniversaires en temps $2^{\lambda/2}$

- Recherche exhaustive en temps 2^{λ}
- Attaque des anniversaires en temps $2^{\lambda/2}$
- Attaques "meet-in-the-middle"
 - Préimages en temps $2^{\lambda/2}$
 - ▶ Parce que chaque pas est inversible

- Recherche exhaustive en temps 2^{λ}
- Attaque des anniversaires en temps $2^{\lambda/2}$
- ► Attaques "meet-in-the-middle"
 - Préimages en temps $2^{\lambda/2}$
 - ▶ Parce que chaque pas est inversible
- Attaques de multicollisions
 - *t*-collisions en temps $\log_2 t2^{\lambda/2}$ [Joux04]
 - A cause de la structure itérative

- Recherche exhaustive en temps 2^{λ}
- Attaque des anniversaires en temps $2^{\lambda/2}$
- Attagues "meet-in-the-middle"
 - Préimages en temps $2^{\lambda/2}$
 - Parce que chaque pas est inversible
- Attaques de multicollisions
 - t-collisions en temps $\log_2 t2^{\lambda/2}$ [Joux04]
 - A cause de la structure itérative
- Attaques "trapdoor"
 - Via choix du sommet initial et/ou des paramètres du graphe

 Attaques par sous-groupes sur les fonctions de hachage de Cayley

- Attaques par sous-groupes sur les fonctions de hachage de Cayley
- Malléabilité
 - ► Fonctions de hachage de Cayley: pour tout m, m'

$$H(m||m') = H(m) \cdot H(m')$$

▶ En général: étant donnés H(m) et m', facile de calculer H(m||m')...

- Attaques par sous-groupes sur les fonctions de hachage de Cayley
- Malléabilité
 - ► Fonctions de hachage de Cayley: pour tout m, m'

$$H(m||m') = H(m) \cdot H(m')$$

▶ En général: étant donnés H(m) et m', facile de calculer H(m||m')... même si m lui-même ne peut être calculé à partir de H(m)!

Plan de l'exposé

- Introduction
- Motivations
- Construction et attaques génériques
- Quelques résultats de la thèse
- Conclusion

Résultats principaux

- ► Fonctions de LPS et Morgenstern: [PLQ08] extension d'une attaque sur collision contre LPS à
 - Attaque sur préimage contre LPS
 - ► Attaques sur collisions et préimages contre Morgenstern

Résultats principaux

- ► Fonctions de LPS et Morgenstern: [PLQ08] extension d'une attaque sur collision contre LPS à
 - Attaque sur préimage contre LPS
 - Attaques sur collisions et préimages contre Morgenstern
- ► Fonction de Zémor-Tillich:

[PQTZ09]

- Review des attaques existantes
- Nouvelles attaques sur préimage et collision
- ▶ Parties facile et difficile du problème de collisions
- Introduction de deux variantes

Résultats principaux

- Fonctions de LPS et Morgenstern: [PLQ08] extension d'une attaque sur collision contre LPS à
 - Attaque sur préimage contre LPS
 - Attaques sur collisions et préimages contre Morgenstern
- Fonction de Zémor-Tillich:
 - Review des attaques existantes
 - Nouvelles attaques sur préimage et collision
 - ▶ Parties facile et difficile du problème de collisions
 - Introduction de deux variantes
- ▶ ZesT: [PVQ08,PdMQTVZ09]
 - ► Nouvelle fonction de hachage basée sur Zémor-Tillich
 - ► Combine les avantages de et de

[PQTZ09]

Fonction de hachage LPS

- Construction: graphes LPS [LPS88, CGL07] (Cayley)
 - Soit I premier et petit, p premier et grand, $p \equiv l \equiv 1 \mod 4$, $\binom{l}{p} = 1$ Soit i tel que $i^2 = -1 \mod p$
 - ▶ Soit $G = PSL(2, \mathbb{F}_p)$, Soit $S = \{s_i, i = 1...l + 1\}$, où

$$s_j = \begin{pmatrix} \alpha_j + \mathbf{i}\beta_j & \gamma_j + \mathbf{i}\delta_j \\ -\gamma_j + \mathbf{i}\delta_j & \alpha_j - \mathbf{i}\beta_j \end{pmatrix}, \qquad j = 0, ..., l;$$

et $(\alpha_i, \beta_i, \gamma_i, \delta_i)$ sont toutes les solutions entières de $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = I$, avec $\alpha > 0$ et β , γ , δ

Collisions pour la fonction LPS [TZ08]

Idée de Tillich et Zémor : relever le problème de **représentation** de $PSL(2, \mathbb{F}_p)$ vers $\Omega \subset SL(2, \mathbb{Z}[i])$:

$$\mathbf{i}^2 = -1$$
 \rightarrow $i^2 = -1$
 \mathbb{F}_p \rightarrow $\mathbb{Z}[i]$
 $PSL(2, \mathbb{F}_p)$ \rightarrow $\Omega \subset SL(2, \mathbb{Z}[i])$
 $\begin{pmatrix} g_{0,j} + \mathbf{i}g_{1,j} & g_{2,j} + \mathbf{i}g_{3,j} \\ -g_{2,j} + \mathbf{i}g_{3,j} & g_{0,j} - \mathbf{i}g_{1,j} \end{pmatrix}$ \rightarrow $\begin{pmatrix} g_{0,j} + ig_{1,j} & g_{2,j} + ig_{3,j} \\ -g_{2,j} + ig_{3,j} & g_{0,j} - ig_{1,j} \end{pmatrix}$

Collisions pour la fonction LPS [TZ08]

Idée de Tillich et Zémor : relever le problème de **représentation** de $PSL(2, \mathbb{F}_p)$ vers $\Omega \subset SL(2, \mathbb{Z}[i])$:

$$\mathbf{i}^{2} = -1 \qquad \rightarrow \qquad i^{2} = -1$$

$$\mathbb{F}_{p} \qquad \rightarrow \qquad \mathbb{Z}[i]$$

$$PSL(2, \mathbb{F}_{p}) \qquad \rightarrow \qquad \Omega \subset SL(2, \mathbb{Z}[i])$$

$$\begin{pmatrix} g_{0,j} + \mathbf{i}g_{1,j} & g_{2,j} + \mathbf{i}g_{3,j} \\ -g_{2,j} + \mathbf{i}g_{3,j} & g_{0,j} - \mathbf{i}g_{1,j} \end{pmatrix} \qquad \rightarrow \qquad \begin{pmatrix} g_{0,j} + ig_{1,j} & g_{2,j} + ig_{3,j} \\ -g_{2,j} + ig_{3,j} & g_{0,j} - ig_{1,j} \end{pmatrix}$$

$$\lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in PSL(2, \mathbb{F}_{p}) \qquad \rightarrow \qquad \begin{pmatrix} a + bi & c + di \\ -c + di & a - bi \end{pmatrix} \in \Omega$$

Ensemble Ω , relevé de G

- Propriétés nécessaires pour Ω:
 - $ightharpoonup \Omega \subset SL(2,\mathbb{Z}[i])$
 - La plupart des $m \in \Omega$ ont une factorisation unique par rapport aux relevés des générateurs
 - Cette factorisation se calcule facilement
 - ► Factorisation dans $PSL(2, \mathbb{F}_p)$ déduite par réduction modulo p

Ensemble Ω , relevé de G

- Propriétés nécessaires pour Ω:
 - $ightharpoonup \Omega \subset SL(2,\mathbb{Z}[i])$
 - La plupart des $m \in \Omega$ ont une factorisation unique par rapport aux relevés des générateurs
 - Cette factorisation se calcule facilement
 - ► Factorisation dans $PSL(2, \mathbb{F}_p)$ déduite par réduction modulo p
- ▶ Pour l'ensemble Ω choisi par [TZ08], trouver $m \in \Omega$ revient à trouver $\lambda, w, x, y, z, e \in \mathbb{Z}$ satisfaisant

$$(\lambda + wp)^2 + 4(xp)^2 + 4(yp)^2 + 4(zp)^2 = I^e$$

Ensemble Ω , relevé de G

- Propriétés nécessaires pour Ω:
 - $ightharpoonup \Omega \subset SL(2,\mathbb{Z}[i])$
 - La plupart des $m \in \Omega$ ont une factorisation unique par rapport aux relevés des générateurs
 - Cette factorisation se calcule facilement
 - ► Factorisation dans $PSL(2, \mathbb{F}_p)$ déduite par réduction modulo p
- ▶ Pour l'ensemble Ω choisi par [TZ08], trouver $m \in \Omega$ revient à trouver $\lambda, w, x, y, z, e \in \mathbb{Z}$ satisfaisant

$$(\lambda + wp)^2 + 4(xp)^2 + 4(yp)^2 + 4(zp)^2 = I^e$$

Fixer $\lambda + wp$, ...

Préimages pour la fonction LPS[PLQ08]

Avec la **même stratégie de relèvement**, trouver une préimage d'une matrice $M = \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix} = \begin{pmatrix} A+Bi & C+Di \\ -C+Di & A-Bi \end{pmatrix}$ revient à résoudre $(A\lambda + wp)^2 + (B\lambda + xp)^2 + (C\lambda + yp)^2 + (D\lambda + zp)^2 = I^{2k}$

Préimages pour la fonction LPS[PLQ08]

Avec la **même stratégie de relèvement**, trouver une préimage d'une matrice $M = \binom{M_1 \ M_2}{M_3 \ M_4} = \binom{A+Bi}{-C+Di} \binom{C+Di}{A-Bi}$ revient à résoudre $(A\lambda + wp)^2 + (B\lambda + xp)^2 + (C\lambda + yp)^2 + (D\lambda + zp)^2 = I^{2k}$

- L'extension triviale ne marche pas:
 - Fixer $A\lambda + wp$ pour satisfaire l'équation modulo p...
 - ... ne permet pas de simplifier par p^2 à cause du terme $2p(wA + xB + yC + zD)\lambda$.
 - ▶ Dans l'équation en x, y, z résultante, les coefficients de degré 2 sont très grands (au moins p)...
 - ... donc très peu probable d'avoir une solution.

Preimages for LPS Hash [PLQ08]

- Aperçu de notre solution:
 - Solution du problème de préimage pour des matrices diagonales

$$(A\lambda + wp)^2 + (B\lambda + xp)^2 + (yp)^2 + (zp)^2 = I^{2k}$$

 Décomposition de toute matrice comme un produit de matrices diagonales et des générateurs

$$\left(\begin{smallmatrix} M_1 & M_2 \\ M_3 & M_4 \end{smallmatrix}\right) = \lambda \left(\begin{smallmatrix} 1 & 0 \\ 0 & \alpha \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 2 \\ -2 & 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & \beta_1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 2 \\ -2 & 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & \beta_2 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 2 \\ -2 & 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & \omega \end{smallmatrix}\right)$$

Preimages for LPS Hash [PLQ08]

- Aperçu de notre solution:
 - ► Solution du problème de préimage pour des *matrices* diagonales

$$(A\lambda + wp)^2 + (B\lambda + xp)^2 + (yp)^2 + (zp)^2 = I^{2k}$$

► Décomposition de toute matrice comme un produit de matrices diagonales et des générateurs

$$\left(\begin{smallmatrix} M_1 & M_2 \\ M_3 & M_4 \end{smallmatrix}\right) = \lambda \left(\begin{smallmatrix} 1 & 0 \\ 0 & \alpha \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 2 \\ -2 & 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & \beta_1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 2 \\ -2 & 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & \beta_2 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 2 \\ -2 & 1 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 0 \\ 0 & \omega \end{smallmatrix}\right)$$

▶ Détails en [PLQ08] ou Ch.6

Cryptanalyse de la fonction de Morgenstern [PLO08]

Graphes LPS pour des premiers impairs / Graphes de Morgenstern pour I^k , y compris I = 2 [M1994] Pour efficacité, on prend I = 2 [PLQ07]

Cryptanalyse de la fonction de Morgenstern [PLO08]

- Graphes LPS pour des premiers impairs I Graphes de Morgenstern pour I^k , y compris I = 2 [M1994] Pour efficacité, on prend I = 2 [PLQ07]
- ▶ Attaque par relèvement de $SL(2, \mathbb{F}_{2^n})$ vers $\Omega \in SL(2, \mathbb{A})$ où $\mathbb{A} = \mathbb{F}_2[x,y]/(y^2+y+1)$
- ► Equations ≠, mais solutions par les mêmes techniques étendues à des polynômes

Cryptanalyse de la fonction de Morgenstern [PLO08]

- Graphes LPS pour des premiers impairs I Graphes de Morgenstern pour I^k , y compris I = 2 [M1994] Pour efficacité, on prend I = 2 [PLQ07]
- ▶ Attaque par relèvement de $SL(2, \mathbb{F}_{2^n})$ vers $\Omega \in SL(2, \mathbb{A})$ où $\mathbb{A} = \mathbb{F}_2[x,y]/(y^2+y+1)$
- ► Equations ≠, mais solutions par les mêmes techniques étendues à des polynômes
- ▶ Détails en [PLQ08] ou Ch.6

▶ Utilise le graphe de Cayley défini par $G = SL(2, \mathbb{F}_{2^n})$, $v_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et

$$S = \{s_0 = \begin{pmatrix} X & 1 \\ 1 & 0 \end{pmatrix}, s_1 = \begin{pmatrix} X & X+1 \\ 1 & 1 \end{pmatrix}\}$$

▶ Utilise le graphe de Cayley défini par $G = SL(2, \mathbb{F}_{2^n})$, $v_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et

$$S = \{s_0 = \begin{pmatrix} X & 1 \\ 1 & 0 \end{pmatrix}, s_1 = \begin{pmatrix} X & X+1 \\ 1 & 1 \end{pmatrix}\}$$

 Résultats partiels de cryptanalyse existants [CP94,G96,AK98,SGGB00]

• Utilise le graphe de Cayley défini par $G = SL(2, \mathbb{F}_{2^n})$, $v_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et

$$S = \{s_0 = \begin{pmatrix} X & 1 \\ 1 & 0 \end{pmatrix}, s_1 = \begin{pmatrix} X & X+1 \\ 1 & 1 \end{pmatrix}\}$$

- Résultats partiels de cryptanalyse existants [CP94,G96,AK98,SGGB00]
- Attaques génériques pour collision et preimage (utilisant les sous-groupes de G) en temps $2^{n/2}$ (au lieu de $2^{3n/2}$ et 2^{3n} pour les anniversaires et l'exhaustive) [PQTZ09]

▶ Utilise le graphe de Cayley défini par $G = SL(2, \mathbb{F}_{2^n})$, $v_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et

$$S = \{s_0 = \begin{pmatrix} X & 1 \\ 1 & 0 \end{pmatrix}, s_1 = \begin{pmatrix} X & X+1 \\ 1 & 1 \end{pmatrix}\}$$

- Résultats partiels de cryptanalyse existants [CP94,G96,AK98,SGGB00]
- Attaques génériques pour collision et preimage (utilisant les sous-groupes de G) en temps $2^{n/2}$ (au lieu de $2^{3n/2}$ et 2^{3n} pour les anniversaires et l'exhaustive) [PQTZ09]
- Comments extraire les bits qui sont sûrs ?

- ► ZT vectoriel: [PQTZ09]
 - ▶ Pour un vecteur initial (a₀ b₀) partie de la clé,

$$H_{ZT}^{vec}(m) = \left(\begin{smallmatrix} a_0 & b_0 \end{smallmatrix} \right) H_{ZT}(m)$$

Aussi sûre que la fonction initiale

- ► ZT vectoriel: [PQTZ09]
 - ▶ Pour un vecteur initial (a₀ b₀) partie de la clé,

$$H_{ZT}^{vec}(m) = \left(\begin{smallmatrix} a_0 & b_0 \end{smallmatrix} \right) H_{ZT}(m)$$

- Aussi sûre que la fonction initiale
- ZT projective: [PQTZ09]
 - ▶ Pour un vecteur initial (a₀ b₀) partie de la clé, renvoie le point projectif [a:b] si ZT vectoriel renvoie (ab)
 - "Presque" aussi sûre que la version vectorielle

- ▶ (Presque) aussi sûres que la fonction initiale
- ▶ La sortie est plus courte: $\approx 3n$ bits $\rightarrow \approx 2n$ and $\approx n$ bits
- ▶ On n'a gardé que la partie "dure" de la recherche de collisions

- (Presque) aussi sûres que la fonction initiale
- ▶ La sortie est plus courte: $\approx 3n$ bits $\rightarrow \approx 2n$ and $\approx n$ bits
- On n'a gardé que la partie "dure" de la recherche de collisions
- Egalement plus efficaces:
 - ► Toujours pour la version vectorielle
 - Sauf pour les petits messages pour la version projective

- (Presque) aussi sûres que la fonction initiale
- ▶ La sortie est plus courte: $\approx 3n$ bits $\rightarrow \approx 2n$ and $\approx n$ bits
- On n'a gardé que la partie "dure" de la recherche de collisions
- Egalement plus efficaces:
 - ► Toujours pour la version vectorielle
 - Sauf pour les petits messages pour la version projective
- Briques de base pour ZesT

> **ZT** est attirante: principales propriétés interprétées en termes de graphes et de groupes, parallélisme, pas trop lent

- > **ZT** est attirante: principales propriétés interprétées en termes de graphes et de groupes, parallélisme, pas trop lent
- ZT a des problèmes importants: malléabilité, invertibilité si messages courts, résistances aux collisions et à la préimage suboptimales

- > **ZT** est attirante: principales propriétés interprétées en termes de graphes et de groupes, parallélisme, pas trop lent
- ZT a des problèmes importants: malléabilité, invertibilité si messages courts, résistances aux collisions et à la préimage suboptimales
- ▶ **ZesT** est Zémor-Tillich avec Encore plus de Securité dedans

Utilise les versions vectorielle et projective de ZT

- Utilise les versions vectorielle et projective de ZT
- Résistance aux collisions: même problème que ZT

Principales faiblesses de ZT éliminées

- Utilise les versions vectorielle et projective de ZT
- ▶ Résistance aux collisions: même problème que ZT

Principales faiblesses de ZT éliminées

- Implémentations ASIC très légères [dMPQ09]
- Efficacité comparable à SHA sur FPGA [dMPQ09]
- ► (Pour l'instant) 4 à 10 fois moins rapide que SHA en software

- Utilise les versions vectorielle et projective de ZT
- ▶ Résistance aux collisions: même problème que ZT

Principales faiblesses de ZT éliminées

- ► Implémentations ASIC très légères [dMPQ09]
- ► Efficacité comparable à SHA sur FPGA [dMPQ09]
- ► (Pour l'instant) 4 à 10 fois moins rapide que SHA en software
- Parallélisme conservé

Plan de l'exposé

- Introduction
- Motivations
- Construction et attaques génériques
- Quelques résultats de la thèse
- Conclusion

- ▶ Design simple, clair, élégant
- Securité en terme de propriétés des graphes et des groupes

- Design simple, clair, élégant
- Securité en terme de propriétés des graphes et des groupes
- Aujourd'hui:
 - ▶ 1ère fonction de Zémor cassée
 - ZT reste sûre depuis 1994
 - Fonctions de LPS et Morgenstern cassées (et reparées)
 - ▶ Fonction de Pizer intacte
 - ▶ ZT vectoriel et projectif aussi sûres que ZT

- ▶ Peut être très efficace en software et en hardware
- Parallélisme (fonctions de hachage Cayley)

- ▶ Peut être très efficace en software et en hardware
- Parallélisme (fonctions de hachage Cayley)
- Principaux problèmes structurels (malléabilité,...) peuvent être supprimés

- ▶ Peut être très efficace en software et en hardware
- Parallélisme (fonctions de hachage Cayley)
- Principaux problèmes structurels (malléabilité,...) peuvent être supprimés
- Besoin de plus d'études, en particulier sur
 - les problèmes mathématiques utilisés
 - la malléabilité des fonctions de hachage

- ▶ Peut être très efficace en software et en hardware
- Parallélisme (fonctions de hachage Cayley)
- Principaux problèmes structurels (malléabilité,...) peuvent être supprimés
- Besoin de plus d'études, en particulier sur
 - les problèmes mathématiques utilisés
 - la malléabilité des fonctions de hachage
- Design très intéressant et prometteur!

(pré-)Publications liées au sujet de thèse

- ZesT: an all-purpose hash function based on Zémor-Tillich Christophe Petit, Giacomo de Meulenaer, Jean-Jacques Quisquater, Jean-Pierre Tillich, Nicolas Veyrat-Charvillon and Gilles Zémor Preprint (2009)
- Hardware Implementations of a Variant of the Zémor-Tillich Hash Function Giacomo de Meulenaer, Christophe Petit and Jean-Jacques Quisquater Preprint (2009)
- Hard and Easy Components of Collision Search in the Zémor-Tillich Hash Function: New Instances and Reduced Variants with Equivalent Security
 Christophe Petit, Jean-Jacques Quisquater, Jean-Pierre Tillich and Gilles Zémor
 CT-RSA 2009 Cryotographer's track at the RSA conference
- ► Full Cryptanalysis of LPS and Morgenstern Hash Functions
 Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater
 SCN 2008 Sixth Conference on Security and Cryptography for Networks
- ▶ Efficiency and Pseudo-Randomness of a Variant of Zémor-Tillich Hash Function Christophe Petit, Nicolas Veyrat-Charvillon, and Jean-Jacques Quisquater WIC'2008 - Symposium on Information Theory and Communication in the Bénélux ISECS'2008 - The 15th IEEE International Conference on Electronics, Circuits and Systems (invited paper)
- Cayley Hashes: A Class of Efficient Graph-based Hash Functions Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater Unpublished (2007)

Autres publications

- ► Fault Attacks on Public Key Elements: Application to DLP based Schemes Chong Hee Kim, Philippe Bulens, Christophe Petit, and Jean-Jacques Quisquater FUROPKI 2008
- ► A Block Cipher based Pseudo Random Number Generator Secure Against Side-Channel Key Recovery Christophe Petit, François-Xavier Standaert, Olivier Pereira, Tal G. Malkin, Moti Yung ASIACCS'08

Questions?

Il faut fêter ça!

Un drink vous attend à la Cafétéria Maxwell Place du Levant 3