On expander hash functions

Christophe Petit

Hash functions: applications

► Cryptographic hash functions are compared to *Swiss army knifes* because of their multiple tools and uses

Hash functions: properties

Compressing functions: (key, message) → hash value

$$H: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{\lambda}$$

- Main properties:
 - Collision resistance
 - ► Preimage resistance
 - Second preimage resistance

Hash functions: properties

► Compressing functions: (key, message) → hash value

$$H: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{\lambda}$$

- Main properties:
 - Collision resistance
 - Preimage resistance
 - Second preimage resistance
- Further properties:
 - ► XOR resistance, ADD resistance, non-multiplicativity ...
 - ▶ PRF, random oracle, ...

Hash functions: constructions

► Standards exist (SHA)...

... but they are being broken!

Hash functions: constructions

- Standards exist (SHA)...
 ... but they are being broken!
- Current hash functions look like this:

Hash functions: constructions

- Standards exist (SHA)...
 ... but they are being broken!
- Current hash functions look like this:

While expander hashes look like this:

Thesis' objectives

Study the security of expander hashes

Generic security

Security of particular constructions

Malleability

Ch.4 Ch.5,6,7,D Ch.8

Thesis' objectives

Study the **security** of expander hashes

•	Generic security	Ch.4
•	Security of particular constructions	Ch.5,6,7,D
•	Malleability	Ch.8

- Study the efficiency of expander hashes
 - Hardware and software efficiency of particular constructions
 - Improved algorithms
 - Parallelism

Ch.4,7,9

Ch.4,9,C

Ch.4,8,9

Thesis' objectives

•	Study the security of expander hashes		
	► Generic security	Ch.4	
	 Security of particular constructions 	Ch.5,6,7,D	
	Malleability	Ch.8	
•	Study the efficiency of expander hashes		
	 Hardware and software efficiency of particular 		
	constructions	Ch.4,7,9	
	Improved algorithms	Ch.4,9,C	
	► Parallelism	Ch.4,8,9	
•	Study the applications of expander hashes		

Model and use malleability

► Remove malleability

Ch.8

Ch.9

Outline

- Introduction
- Generic construction and attacks
- Known instances
 - Overview
 - ► Focus 1 : Cryptanalysis of LPS and Morgenstern hash functions
 - ► Focus 2 : Vectorial and projective Zémor-Tillich
- Perspectives
- Conclusion

Outline

- ► Introduction
- Generic construction and attacks
- Known instances
 - Overview
 - ► Focus 1 : Cryptanalysis of LPS and Morgenstern hash functions
 - ► Focus 2 : Vectorial and projective Zémor-Tillich
- Perspectives
- Conclusion

Expander hashes

► For a *k*-regular **directed** graph, color the edges with *k* colors, choose an initial vertex

Expander hashes

► For a *k*-regular **directed** graph, color the edges with *k* colors, choose an initial vertex

- ▶ Given a message m, decompose it into k-digits $m = m_1 m_2 ... m_{\mu}$
- ► The digits fix a walk in the graph according to the coloring

Expander hashes

► For a *k*-regular **directed** graph, color the edges with *k* colors, choose an initial vertex

- ▶ Given a message m, decompose it into k-digits $m = m_1 m_2 ... m_{\mu}$
- ► The digits fix a walk in the graph according to the coloring
- For undirected graphs: forbid backtracking

Cayley hashes

- Cayley graphs: graphs built from groups
- Cayley hashes: expander hashes built from Cayley graphs Example for $S = \{s_0, s_1\}$ and initial vertex 1:

$$H(11001) = s_1 s_1 s_0 s_0 s_1$$

Cayley hashes

- Cayley graphs: graphs built from groups
- Cayley hashes: expander hashes built from Cayley graphs Example for $S = \{s_0, s_1\}$ and initial vertex 1:

$$H(11001) = s_1 s_1 s_0 s_0 s_1$$

- Simplifies definition and study
- Allows parallelism: $H(m_1||m_2) = H(m_1) \cdot H(m_2)$ where · is group law

Cayley hashes: security properties

hash	graph	group
properties	properties	properties
collision	cycle / two-paths	representation /
resistance	problem	balance problem
preimage	path-finding	factorization
resistance	problem	problem
output	expanding	Kazhdan
distribution	properties	constant
minimal collision	girth	
"distance"		

Representation problem

• Given a group G and $S = \{s_1, ... s_k\} \subset G$, find a product in reduced form

$$\prod_{1 \leq i \leq \mathcal{N}} s^{\mathsf{e}_i}_{\theta(i)} = 1$$

where $e_i \in \mathbb{Z}^+$, $\theta : \{1,...N\} \to \{1...k\}$ and $\sum e_i$ is "small".

By reduced form, we mean that for each i, $s_{\theta(i+1)} \neq s_{\theta(i)}, s_{\theta(i)}^{-1}$

Representation problem

• Given a group G and $S = \{s_1, ... s_k\} \subset G$, find a product in reduced form

$$\prod_{1 \leq i \leq \mathcal{N}} s^{\mathsf{e}_i}_{ heta(i)} = 1$$

where $e_i \in \mathbb{Z}^+$, $\theta : \{1,...N\} \to \{1...k\}$ and $\sum e_i$ is "small".

By reduced form, we mean that for each i, $s_{\theta(i+1)} \neq s_{\theta(i)}, s_{\theta(i)}^{-1}$

▶ The hardness of this problem highly depends on G and S! Of course, G must be non-Abelian

- Birthday attack in time $2^{\lambda/2}$
- Exhaustive search in time 2^{λ}

- Birthday attack in time $2^{\lambda/2}$
- Exhaustive search in time 2^{λ}
- "Meet-in-the-middle" preimage attacks
 - Preimages in time $2^{\lambda/2}$
 - Because each step is invertible

- Birthday attack in time $2^{\lambda/2}$
- Exhaustive search in time 2^{λ}
- "Meet-in-the-middle" preimage attacks
 - Preimages in time $2^{\lambda/2}$
 - ▶ Because each step is invertible
- Multicollision attacks
 - *t*-collisions in time $\log_2 t2^{\lambda/2}$ [Joux04]
 - Because of iterative structure

- Birthday attack in time $2^{\lambda/2}$
- Exhaustive search in time 2^{λ}
- "Meet-in-the-middle" preimage attacks
 - Preimages in time $2^{\lambda/2}$
 - Because each step is invertible
- Multicollision attacks
 - t-collisions in time $\log_2 t2^{\lambda/2}$ [Joux04]
 - Because of iterative structure
- Trapdoor attacks
 - Choose initial vertex and/or graph parameters to help collision search

Subgroup attacks on Cayley hashes

- Subgroup attacks on Cayley hashes
- Malleability
 - Cayley hashes: for any m, m'

$$H(m||m') = H(m) \cdot H(m')$$

▶ In general: given H(m) and m', easy to compute H(m||m')... ... even if m itself cannot be computed from H(m)!

Outline

- ► Introduction
- Generic construction and attacks
- Known instances
 - Overview
 - ► Focus 1 : Cryptanalysis of LPS and Morgenstern hash functions
 - ► Focus 2 : Vectorial and projective Zémor-Tillich
- Perspectives
- Conclusion

Outline

- Introduction
- Generic construction and attacks
- Known instances
 - Overview
 - ► Focus 1 : Cryptanalysis of LPS and Morgenstern hash functions
 - ► Focus 2 : Vectorial and projective Zémor-Tillich
- Perspectives
- Conclusion

Zémor's first proposal

Construction [Zém91,Zém94]: Cayley hash with $G = SL(2, \mathbb{F}_p)$, $v_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and

$$S = \{s_0 = \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right), s_1 = \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix} \right)\}$$

Zémor's first proposal

Construction [Zém91,Zém94]: Cayley hash with $G = SL(2, \mathbb{F}_p)$, $v_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and

$$S = \{s_0 = \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right), s_1 = \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix}\right)\}$$

- Cryptanalysis [TZ93]:
 - ► Collision "lifting" attack: lift the representation problem from $SL(2, \mathbb{F}_p)$ to $SL(2, \mathbb{Z}^+)$
 - Also a preimage attack
 - ▶ This function is broken!

- ► Construction : [TZ94]
 - Let $P_n(X) \in \mathbb{F}_2[X]$ irreducible, degree $n \in [130, 170]$ Let $K = \mathbb{F}_2[X]/(P_n(X))$

- ► Construction : [TZ94]
 - ▶ Let $P_n(X) \in \mathbb{F}_2[X]$ irreducible, degree $n \in [130, 170]$ Let $K = \mathbb{F}_2[X]/(P_n(X))$
 - ▶ Take G = SL(2, K),

$$S = \left\{ s_0 = \left(\begin{smallmatrix} X & 1 \\ 1 & 0 \end{smallmatrix} \right), s_1 = \left(\begin{smallmatrix} X & X+1 \\ 1 & 1 \end{smallmatrix} \right) \right\}$$

Take $v_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- Construction: |TZ94|
 - ▶ Let $P_n(X) \in \mathbb{F}_2[X]$ irreducible, degree $n \in [130, 170]$ Let $K = \mathbb{F}_2[X]/(P_n(X))$
 - ▶ Take G = SL(2, K),

$$S = \left\{ s_0 = \left(\begin{smallmatrix} X & 1 \\ 1 & 0 \end{smallmatrix} \right), s_1 = \left(\begin{smallmatrix} X & X+1 \\ 1 & 1 \end{smallmatrix} \right) \right\}$$

Take
$$v_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- Reasonably efficient
 - 3 additions / bit
 - ► Binary fields arithmetic

- Partial cryptanalysis...
 - Generic issues of Cayley hashes

Invertibility for short messages [SGGB00]

▶ Trapdoor attacks on $P_n(X)$ [CP94,AK98,SGGB00]

Projection to finite fields [G96]

 Subgroup attacks for composite n [SGGB00]

▶ Generic collision and preimage subgroup attacks in time $2^{n/2}$ (instead of $2^{3n/2}$ and 2^{3n} for birthday and exhaustive) [PQTZ09]

- ▶ Partial cryptanalysis...
 - Generic issues of Cayley hashes

► Invertibility for short messages [SGGB00]

► Trapdoor attacks on $P_n(X)$ [CP94,AK98,SGGB00]

► Projection to finite fields [G96]

► Subgroup attacks for composite *n* [SGGB00]

► Generic collision and preimage subgroup attacks in time $2^{n/2}$ (instead of $2^{3n/2}$ and 2^{3n} for birthday and exhaustive) [PQTZ09]

... but fundamentally unbroken since 1994

- Partial cryptanalysis...
 - Generic issues of Cayley hashes

Invertibility for short messages [SGGB00]

▶ Trapdoor attacks on $P_n(X)$ [CP94,AK98,SGGB00]

Projection to finite fields [G96]

 Subgroup attacks for composite n [SGGB00]

• Generic collision and preimage subgroup attacks in time $2^{n/2}$ (instead of $2^{3n/2}$ and 2^{3n} for birthday and exhaustive) [PQTZ09]

... but fundamentally unbroken since 1994

Vectorial and projective variants [PQTZ09]

LPS and Morgenstern hash functions

- ► LPS hash function: use LPS Ramanujan graphs [LPS88, CGL07]
- Reasonably efficient (a few additions / step)
- Extension to Morgenstern Ramanujan graphs [PLQ07]

LPS and Morgenstern hash functions

- ▶ LPS hash function: use LPS Ramanujan graphs [LPS88, CGL07]
- Reasonably efficient (a few additions / step)
- Extension to Morgenstern Ramanujan graphs [PLQ07]
- Cryptanalysis
 - Collision lifting attack [TZ08]
 - Extension to preimage attack [PLQ08]
 - Extension to collision and preimage for Morgenstern hash [PLQ08]

LPS and Morgenstern hash functions

- ▶ LPS hash function: use LPS Ramanujan graphs [LPS88, CGL07]
- Reasonably efficient (a few additions / step)
- Extension to Morgenstern Ramanujan graphs [PLQ07]
- Cryptanalysis
 - Collision lifting attack [TZ08]
 - Extension to preimage attack [PLQ08]
 - Extension to collision and preimage for Morgenstern hash [PLQ08]
- ▶ Both functions repaired by modifying *S*

The Pizer hash function

- Use Pizer's Ramanujan graphs [P90,CGL07]
 - (Not Cayley)
 - Vertices are supersingular elliptic curves
 - Edges are isogenies of fixed degree

The Pizer hash function

- Use Pizer's Ramanujan graphs [P90,CGL07]
 - ► (Not Cayley)
 - Vertices are supersingular elliptic curves
 - Edges are isogenies of fixed degree
- ▶ Not broken so far, but
 - Much slower than previous instances
 - No guarantee on the girth in general

Outline

- Introduction
- Generic construction and attacks
- Known instances
 - Overview
 - ► Focus 1 : Cryptanalysis of LPS and Morgenstern hash functions
 - ► Focus 2 : Vectorial and projective Zémor-Tillich
- Perspectives
- Conclusion

LPS hash function

- Construction: use LPS Ramanujan graphs [LPS88, CGL07]
 - ▶ Let *I* small prime, *p* large prime, $p \equiv I \equiv 1 \mod 4$, $\binom{I}{p} = 1$ Let **i** such that $\mathbf{i}^2 = -1 \mod p$
 - ▶ Let $G = PSL(2, \mathbb{F}_p)$, Let $S = \{s_i, j = 1...l + 1\}$, where

$$s_j = \begin{pmatrix} \alpha_j + \mathbf{i}\beta_j & \gamma_j + \mathbf{i}\delta_j \\ -\gamma_j + \mathbf{i}\delta_j & \alpha_j - \mathbf{i}\beta_j \end{pmatrix}, \qquad j = 0, ..., l;$$

and $(\alpha_j, \beta_j, \gamma_j, \delta_j)$ are all the integer solutions of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = I$, with $\alpha > 0$ and β , γ , δ

Collisions for LPS Hash [TZ08]

▶ Idea of Tillich-Zémor attack : **lift the representation problem** from $PSL(2, \mathbb{F}_p)$ to $\Omega \subset SL(2, \mathbb{Z}[i])$:

$$\begin{aligned} \mathbf{i}^2 &= -1 & \rightarrow & i^2 &= -1 \\ \mathbb{F}_p & \rightarrow & \mathbb{Z}[i] \\ PSL(2, \mathbb{F}_p) & \rightarrow & \Omega \subset SL(2, \mathbb{Z}[i]) \\ \begin{pmatrix} g_{0,j} + \mathbf{i} g_{1,j} & g_{2,j} + \mathbf{i} g_{3,j} \\ -g_{2,j} + \mathbf{i} g_{3,j} & g_{0,j} - \mathbf{i} g_{1,j} \end{pmatrix} & \rightarrow & \begin{pmatrix} g_{0,j} + i g_{1,j} & g_{2,j} + i g_{3,j} \\ -g_{2,j} + i g_{3,j} & g_{0,j} - i g_{1,j} \end{pmatrix} \end{aligned}$$

Collisions for LPS Hash [TZ08]

▶ Idea of Tillich-Zémor attack : **lift the representation problem** from $PSL(2, \mathbb{F}_p)$ to $\Omega \subset SL(2, \mathbb{Z}[i])$:

$$\begin{aligned} \mathbf{i}^2 &= -1 & \rightarrow & i^2 &= -1 \\ \mathbb{F}_p & \rightarrow & \mathbb{Z}[i] \\ PSL(2, \mathbb{F}_p) & \rightarrow & \Omega \subset SL(2, \mathbb{Z}[i]) \\ \begin{pmatrix} g_{0,j} + \mathbf{i} g_{1,j} & g_{2,j} + \mathbf{i} g_{3,j} \\ -g_{2,j} + \mathbf{i} g_{3,j} & g_{0,j} - \mathbf{i} g_{1,j} \end{pmatrix} & \rightarrow & \begin{pmatrix} g_{0,j} + i g_{1,j} & g_{2,j} + i g_{3,j} \\ -g_{2,j} + i g_{3,j} & g_{0,j} - i g_{1,j} \end{pmatrix} \\ \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in PSL(2, \mathbb{F}_p) & \rightarrow & \begin{pmatrix} a + bi & c + di \\ -c + di & a - bi \end{pmatrix} \in \Omega \end{aligned}$$

The lifted set Ω

- Properties required of Ω:
 - $ightharpoonup \Omega \subset SL(2,\mathbb{Z}[i])$
 - ▶ A large proportion (actually all) of $m \in \Omega$ has a unique factorization in the lifted generators
 - This factorization is easily computed
 - We deduce a factorization in $PSL(2, \mathbb{F}_p)$ by reduction modulo p

The lifted set Ω

- Properties required of Ω:
 - $ightharpoonup \Omega \subset SL(2,\mathbb{Z}[i])$
 - \blacktriangleright A large proportion (actually all) of $m \in \Omega$ has a unique factorization in the lifted generators
 - This factorization is easily computed
 - We deduce a factorization in $PSL(2, \mathbb{F}_p)$ by reduction modulo p
- ▶ For the Ω chosen in [TZ08], finding $m \in \Omega$ mainly amounts to finding $\lambda, w, x, y, z, e \in \mathbb{Z}$ solving

$$(\lambda + wp)^2 + 4(xp)^2 + 4(yp)^2 + 4(zp)^2 = I^e$$

The lifted set Ω

- Properties required of Ω:
 - $ightharpoonup \Omega \subset SL(2,\mathbb{Z}[i])$
 - \blacktriangleright A large proportion (actually all) of $m \in \Omega$ has a unique factorization in the lifted generators
 - This factorization is easily computed
 - We deduce a factorization in $PSL(2, \mathbb{F}_p)$ by reduction modulo p
- ▶ For the Ω chosen in [TZ08], finding $m \in \Omega$ mainly amounts to finding $\lambda, w, x, y, z, e \in \mathbb{Z}$ solving

$$(\lambda + wp)^2 + 4(xp)^2 + 4(yp)^2 + 4(zp)^2 = I^e$$

Fix $\lambda + wp$, ...

▶ With the **same lifting strategy**, finding a preimage to a matrix $M = \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix} = \begin{pmatrix} A+B\mathbf{i} & C+D\mathbf{i} \\ -C+D\mathbf{i} & A-B\mathbf{i} \end{pmatrix}$ now amounts to solving

$$(A\lambda + wp)^2 + (B\lambda + xp)^2 + (C\lambda + yp)^2 + (D\lambda + zp)^2 = I^{2k}$$

With the **same lifting strategy**, finding a preimage to a matrix $M = \begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix} = \begin{pmatrix} A+B\mathbf{i} & C+D\mathbf{i} \\ -C+D\mathbf{i} & A-B\mathbf{i} \end{pmatrix}$ now amounts to solving

$$(A\lambda + wp)^2 + (B\lambda + xp)^2 + (C\lambda + yp)^2 + (D\lambda + zp)^2 = I^{2k}$$

- Trivial extension does not work:
 - Fixing $A\lambda + wp$ to satisfy the equation modulo p...
 - ... does not permit simplifying by p^2 because of the term $2p(wA + xB + yC + zD)\lambda$.
 - ▶ Hence the coefficients of degree-2 terms are huge (at least p)...
 - ightharpoonup ... so the resulting equation in x, y, z is most likely to have no solution.

- Sketch of our solution:
 - Solve the preimage problem for diagonal matrices $(A\lambda + wp)^2 + (B\lambda + xp)^2 + (vp)^2 + (zp)^2 = I^{2k}$
 - Decompose any matrix as a product of diagonal matrices and graph generators

$$\begin{pmatrix} \stackrel{1}{M_1} \stackrel{1}{M_2} \\ \stackrel{1}{M_3} \stackrel{1}{M_4} \end{pmatrix} = \lambda \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \beta_1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \beta_2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \omega \end{pmatrix}$$

- Sketch of our solution:
 - Solve the preimage problem for diagonal matrices $(A\lambda + wp)^2 + (B\lambda + xp)^2 + (vp)^2 + (zp)^2 = I^{2k}$
 - Decompose any matrix as a product of diagonal matrices and graph generators

$$\begin{pmatrix} \stackrel{1}{M_1} \stackrel{1}{M_2} \\ \stackrel{1}{M_3} \stackrel{1}{M_4} \end{pmatrix} = \lambda \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \beta_1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \beta_2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \omega \end{pmatrix}$$

▶ See [PLQ08] or Ch.6 for details

Cryptanalysis of Morgenstern Hash [PLQ08]

LPS graphs for odd primes I
 Morgenstern graphs for I^k, including I = 2 [M1994]
 Morgenstern hashes use I = 2 [PLQ07]

Cryptanalysis of Morgenstern Hash [PLQ08]

- LPS graphs for odd primes I
 Morgenstern graphs for I^k, including I = 2 [M1994]
 Morgenstern hashes use I = 2 [PLQ07]
- ▶ Lifting attack from $SL(2, \mathbb{F}_{2^n})$ to $\Omega \in SL(2, \mathbb{A})$ where $\mathbb{A} = \mathbb{F}_2[x, y]/(y^2 + y + 1)$
- ► The resulting equations differ, but can be solved with the same techniques extended to polynomials

Cryptanalysis of Morgenstern Hash [PLQ08]

- LPS graphs for odd primes I
 Morgenstern graphs for I^k, including I = 2 [M1994]
 Morgenstern hashes use I = 2 [PLQ07]
- ▶ Lifting attack from $SL(2, \mathbb{F}_{2^n})$ to $\Omega \in SL(2, \mathbb{A})$ where $\mathbb{A} = \mathbb{F}_2[x, y]/(y^2 + y + 1)$
- ► The resulting equations differ, but can be solved with the same techniques extended to polynomials
- ► See [PLQ08] or Ch.6 for details

Outline

- ► Introduction
- Generic construction and attacks
- Known instances
 - Overview
 - ► Focus 1 : Cryptanalysis of LPS and Morgenstern hash functions
 - ► Focus 2 : Vectorial and projective Zémor-Tillich
- Perspectives
- Conclusion

The Zémor-Tillich hash function (ZT)

- Recall:
 - ightharpoonup ZT is a Cayley hash with $G = SL(2, \mathbb{F}_{2^n}), v_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and

$$S = \left\{ s_0 = \left(\begin{smallmatrix} X & 1 \\ 1 & 0 \end{smallmatrix} \right), s_1 = \left(\begin{smallmatrix} X & X+1 \\ 1 & 1 \end{smallmatrix} \right) \right\}$$

• Generic collision and preimage subgroup attacks in time $2^{n/2}$ (instead of $2^{3n/2}$ and 2^{3n} for birthday and exhaustive) [PQTZ09]

The Zémor-Tillich hash function (ZT)

- Recall:
 - ightharpoonup ZT is a Cayley hash with $G = SL(2, \mathbb{F}_{2^n}), v_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and

$$S = \left\{ s_0 = \left(\begin{smallmatrix} X & 1 \\ 1 & 0 \end{smallmatrix} \right), s_1 = \left(\begin{smallmatrix} X & X+1 \\ 1 & 1 \end{smallmatrix} \right) \right\}$$

- Generic collision and preimage subgroup attacks in time $2^{n/2}$ (instead of $2^{3n/2}$ and 2^{3n} for birthday and exhaustive) [PQTZ09]
- How to extract the secure bits?

- Vectorial ZT: [PQTZ09]
 - ▶ For an initial vector (a₀ b₀) part of the key,

$$H_{ZT}^{vec}(m) = \left(\begin{smallmatrix} a_0 & b_0 \end{smallmatrix} \right) H_{ZT}(m)$$

Just as secure as the original ZT

- Vectorial ZT: [PQTZ09]
 - ▶ For an initial vector (a₀ b₀) part of the key,

$$H_{ZT}^{vec}(m) = \left(\begin{smallmatrix} a_0 & b_0 \end{smallmatrix} \right) H_{ZT}(m)$$

- Just as secure as the original ZT
- Projective ZT: [PQTZ09]
 - For an initial vector $(a_0 b_0)$ part of the key, returns the projective point [a:b] if the vectorial ZT returns (ab)
 - "Nearly" as secure as the vectorial version

- (Nearly) as secure as the original version
- Reduced output sizes: $\approx 3n$ bits $\rightarrow \approx 2n$ and $\approx n$ bits
- Keep hard components of the representation problem; remove easy components

- (Nearly) as secure as the original version
- ▶ Reduced output sizes: $\approx 3n$ bits $\rightarrow \approx 2n$ and $\approx n$ bits
- Keep hard components of the representation problem; remove easy components
- Also more efficient:
 - Always for vectorial version
 - Always but on short messages for projective version

- (Nearly) as secure as the original version
- ▶ Reduced output sizes: $\approx 3n$ bits $\rightarrow \approx 2n$ and $\approx n$ bits
- Keep hard components of the representation problem; remove easy components
- Also more efficient:
 - Always for vectorial version
 - Always but on short messages for projective version
- Used in our new function 7esT

Outline

- ► Introduction
- Generic construction and attacks
- Known instances
 - Overview
 - ► Focus 1 : Cryptanalysis of LPS and Morgenstern hash functions
 - ► Focus 2 : Vectorial and projective Zémor-Tillich
- Perspectives
- Conclusion

▶ Inherent to expander hash design

- Inherent to expander hash design
- Formalization:
 - Correlation intractability [CGH98]
 - ► Non-malleability [BCFW08]

- Inherent to expander hash design
- Formalization:
 - Correlation intractability [CGH98]
 - ► Non-malleability [BCFW08]
- Applications:
 - ▶ Undesirable for auctions, ...
 - OK if collision resistance suffices
 - Useful for parallelism, [LM08], [QJ97]

- Inherent to expander hash design
- Formalization:
 - ► Correlation intractability [CGH98]
 - ► Non-malleability [BCFW08]
- Applications:
 - Undesirable for auctions, ...
 - OK if collision resistance suffices
 - Useful for parallelism, [LM08], [QJ97]
- May be removed with additional design: ZesT

ZesT: an all-purpose hash function based on Zémor-Tillich [PVO08,PdMOTVZ09]

ZT is appealing: security proof for collision resistance, graph and group perspectives, parallelism, good efficiency...

ZesT: an all-purpose hash function based on Zémor-Tillich [PVO08,PdMOTVZ09]

- **ZT** is appealing: security proof for collision resistance, graph and group perspectives, parallelism, good efficiency...
- > **ZT** has important issues: malleability, invertibility on short messages, suboptimal collision and preimage resistances

ZesT: an all-purpose hash function based on Zémor-Tillich [PVO08,PdMOTVZ09]

- **ZT** is appealing: security proof for collision resistance, graph and group perspectives, parallelism, good efficiency...
- > **ZT** has important issues: malleability, invertibility on short messages, suboptimal collision and preimage resistances
- ► **ZesT** is Zémor-Tillich with Enhanced Security inside

ZesT: an all-purpose hash function based on Zémor-Tillich [PVQ08,PdMQTVZ09]

Use vectorial and projective ZT as building blocks

ZesT: an all-purpose hash function based on Zémor-Tillich [PVQ08,PdMQTVZ09]

- Use vectorial and projective ZT as building blocks
- Collision resistance reduces to the representation problem of ZT
- Weaknesses of 7T are removed

ZesT: an all-purpose hash function based on Zémor-Tillich [PVQ08,PdMQTVZ09]

- Use vectorial and projective ZT as building blocks
- Collision resistance reduces to the representation problem of ZT
- Weaknesses of ZT are removed
- [dMPQ09] Ultra-lightweight ASIC implementations
- [dMPQ09] ► Throughput comparable to SHA on FPGA
- (Currently) 4 to 10 times as slow as SHA in software
- Parallelism still to be used

Outline

- Introduction
- Generic construction and attacks
- Known instances
 - Overview
 - ► Focus 1 : Cryptanalysis of LPS and Morgenstern hash functions
 - ► Focus 2 : Vectorial and projective Zémor-Tillich
- Perspectives
- Conclusion

- ► Today:
 - Zémor's first proposal broken
 - 7T unbroken since 1994
 - ▶ LPS, Morgenstern hashes broken (and repaired)
 - Pizer hash unbroken
 - Vectorial and projective ZT as secure as ZT

► Elegant, clear, simple design

- ► Elegant, clear, simple design
- Provable security, stated as graph and group properties

- Elegant, clear, simple design
- Provable security, stated as graph and group properties
- ▶ May be very efficient in software and hardware

- ► Elegant, clear, simple design
- Provable security, stated as graph and group properties
- May be very efficient in software and hardware
- Parallelism (Cayley hashes)

- ► Elegant, clear, simple design
- Provable security, stated as graph and group properties
- May be very efficient in software and hardware
- Parallelism (Cayley hashes)
- ▶ Main design issues (malleability,...) can be removed with additional design

Ramanujan property not so benefic after all

- Ramanujan property not so benefic after all
- Underlying hard problems should be further studied

- Ramanujan property not so benefic after all
- Underlying hard problems should be further studied
- Malleability of hash functions should be further studied

- Ramanujan property not so benefic after all
- Underlying hard problems should be further studied
- Malleability of hash functions should be further studied
- Very interesting design!

Publications and preprints on expander hashes

ZesT: an all-purpose hash function based on Zémor-Tillich

Christophe Petit, Giacomo de Meulenaer, Jean-Jacques Quisquater, Jean-Pierre Tillich, Nicolas Veyrat-Charvillon and Gilles 7émor

Preprint (2009)

Hardware Implementations of a Variant of the **7émor-Tillich Hash Function**

Giacomo de Meulenaer, Christophe Petit and Jean-Jacques Quisquater

Preprint (2009)

Publications and preprints on expander hashes

- ► Hard and Easy Components of Collision Search in the Zémor-Tillich Hash Function: New Instances and Reduced Variants with Equivalent Security Christophe Petit, Jean-Jacques Quisquater, Jean-Pierre Tillich and Gilles 7émor To appear in CT-RSA 2009
- ► Full Cryptanalysis of LPS and Morgenstern Hash Functions
 - Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater SCN 2008 - Sixth Conference on Security and Cryptography for Networks

Publications and preprints on expander hashes

Efficiency and Pseudo-Randomness of a Variant of **7émor-Tillich Hash Function**

Christophe Petit, Nicolas Veyrat-Charvillon, and Jean-Jacques Quisquater

WIC'2008 - Symposium on Information Theory and Communication in the Bénélux

ISECS'2008 - The 15th IEEE International Conference on

Electronics, Circuits and Systems (invited paper)

Cayley Hashes: A Class of Efficient Graph-based Hash Functions

Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater Preprint (2007)

Other publications

► Fault Attacks on Public Key Elements: Application to DLP based Schemes

Chong Hee Kim, Philippe Bulens, Christophe Petit, and Jean-Jacques Quisquater EUROPKI 2008

► A Block Cipher based Pseudo Random Number Generator Secure Against Side-Channel Key Recovery Christophe Petit, François-Xavier Standaert, Olivier Pereira, Tal G. Malkin, Moti Yung ASIACCS'08

Collisions and preimages

Finding a preimage is finding a path starting at the origin and ending at some given vertex.

(For Crypto, $> 2^{160}$ vertices)

Collisions and preimages

► Finding a *collision* amounts to finding *two paths* starting at the origin and ending at the same vertex.

Collisions and preimages

▶ If the graph is undirected, this amounts to finding a *cycle* through the origin.

Girth

▶ For undirected graphs, the girth is the size of the smallest cycle For directed graphs

Girth

▶ For undirected graphs, the girth is the size of the smallest cycle For directed graphs

▶ The minimal "distance" between any collisions is given by the girth of the graph

Spectral expansion

- $\lambda := \max_{i \neq 0} |\lambda_i|$ ($\lambda_i = \text{eigenvalues of the graph}$)
 - k-regular graphs : $\lambda_0 = k \ge |\lambda_i|$
 - k-regular undirected graphs : $\lambda_0 = k > \lambda_1 > ... > \lambda_{n-1} > -k$

Spectral expansion

- $\lambda := \max_{i \neq 0} |\lambda_i|$ $(\lambda_i = \text{eigenvalues of the graph})$
 - k-regular graphs : $\lambda_0 = k \ge |\lambda_i|$
 - k-regular undirected graphs : $\lambda_0 = k > \lambda_1 > ... > \lambda_{n-1} > -k$
- Uniform distribution of outputs iff convergence of random walks iff $\lambda < k$
- $\triangleright \lambda$ gives the rate of convergence
- **Expander graph** : λ small

Spectral expansion

- $\lambda := \max_{i \neq 0} |\lambda_i|$ $(\lambda_i = \text{eigenvalues of the graph})$
 - k-regular graphs : $\lambda_0 = k \ge |\lambda_i|$
 - k-regular undirected graphs : $\lambda_0 = k > \lambda_1 > ... > \lambda_{n-1} > -k$
- Uniform distribution of outputs iff convergence of random walks iff $\lambda < k$
- \triangleright λ gives the rate of convergence
- **Expander graph** : λ small
- ▶ Alon-Boppana (undirected graphs): $\liminf_{|V|\to+\infty} \lambda_1 \ge 2\sqrt{k-1}$
- ► Ramanujan graph family : $\liminf_{|V| \to +\infty} \lambda_1 = 2\sqrt{k-1}$

Expander hashes: security properties

hash	graph
properties	properties
collision	cycle / two-paths
resistance	problem
preimage	path-finding
resistance	problem
output	expanding
distribution	properties
minimal collision	girth
"distance"	

Cayley hashes

- $ightharpoonup C_{G,S} = (V, E)$: for a group G and $S \subset G$, add
 - ▶ a vertex v_g for each $g \in G$
 - ▶ an edge (v_{g_1}, v_{g_2}) iff $\exists s \in S$ with $g_2 = g_1 s$

Cayley hashes

- $C_{G,S} = (V, E)$: for a group G and $S \subset G$, add
 - ▶ a vertex v_g for each $g \in G$
 - ▶ an edge (v_{g_1}, v_{g_2}) iff $\exists s \in S$ with $g_2 = g_1 s$
- Example : $G = (\mathbb{Z}/8\mathbb{Z}, +), S = \{1, 2\}$

Balance problem

► Find two products

$$\prod_{1 \leq i \leq N} s_{\theta(i)}^{e_i} = \prod_{1 \leq i \leq N'} s_{\theta'(i)}^{e_i'}$$

where...

Security of Cayley Hashes

- Similarly: balance, factorization problems
- For Cayley hashes, Solving the representation problem
 - ⇒ Finding collisions
 - ⇒ Solving the balance problem
- Equivalence if the graph is undirected

Security of Cayley Hashes

- Similarly: balance, factorization problems
- For Cayley hashes, Solving the representation problem
 - \Rightarrow Finding collisions
 - \Rightarrow Solving the balance problem
- Equivalence if the graph is undirected
- ▶ The hardness of these problems highly depends on G and S! Of course, G must be non-Abelian

▶ Exploit group structure: $H(m||m') = H(m) \cdot H(m')$

- ▶ Exploit group structure: $H(m||m') = H(m) \cdot H(m')$
- $ightharpoonup s_i^{\operatorname{ord}(s_i)} = 1$ for any $s_i \in S$

- Exploit group structure: $H(m||m') = H(m) \cdot H(m')$
- $ightharpoonup s_i^{\operatorname{ord}(s_i)} = 1$ for any $s_i \in S$
- Choose graph parameters such that $ord(s_i)$ is small (trapdoor attack)

- ▶ Exploit group structure: $H(m||m') = H(m) \cdot H(m')$
- $ightharpoonup s_i^{\operatorname{ord}(s_i)} = 1$ for any $s_i \in S$
- \triangleright Choose graph parameters such that ord(s_i) is small (trapdoor attack)
- If there is a subgroup tower sequence

$$G = G_0 \supset G_1 \supset G_2 \supset ... \supset G_N = \{I\}$$
 such that $|G_{i-1}|/|G_i| \leq B$ for all i :

use subgroup structure and birthday searches to get collisions in time \sqrt{B}

Zémor's first proposal

- Collision "lifting" attack [TZ93]
 - Find a lift of the identity: a matrix $M \in SL(2,\mathbb{Z})$ with $M = I \mod p$
 - ▶ Solve the factorization problem in $SL(2, \mathbb{Z})$ with a variant of the Euclidean algorithm
 - Very efficient algorithm

Zémor's first proposal

- Collision "lifting" attack [TZ93]
 - Find a lift of the identity: a matrix $M \in SL(2,\mathbb{Z})$ with $M = I \mod p$
 - ▶ Solve the factorization problem in $SL(2, \mathbb{Z})$ with a variant of the Euclidean algorithm
 - Very efficient algorithm
- Trivially extends to a preimage attack
- This function is broken !

Vectorial Zémor-Tillich [PQTZ09]

▶ [PQTZ09]: the output of ZT is 3n bits while its security is nbits: how to extract the secure bits?

Vectorial Zémor-Tillich [PQTZ09]

- ▶ [PQTZ09]: the output of ZT is 3n bits while its security is n bits: how to extract the secure bits?
- Vectorial ZT:
 - ▶ Outputs 2*n* bits
 - ► For an initial vector (a₀ b₀) part of the key,

$$H_{ZT}^{vec}(m) = \left(\begin{smallmatrix} a_0 & b_0 \end{smallmatrix} \right) H_{ZT}(m)$$

Vectorial Zémor-Tillich [PQTZ09]

- \triangleright [PQTZ09]: the output of ZT is 3n bits while its security is n bits: how to extract the secure bits?
- Vectorial 7T.
 - ▶ Outputs 2*n* bits
 - ▶ For an initial vector (a₀ b₀) part of the key,

$$H_{ZT}^{\text{vec}}(m) = \left(\begin{smallmatrix} a_0 & b_0 \end{smallmatrix} \right) H_{ZT}(m)$$

If the initial vector is chosen randomly. just as secure as the original matrix version

▶ Suppose ∃ algorithm finding collisions for the vectorial version...

$$\left(\begin{array}{c} a_0 \ b_0 \end{array}\right) \underbrace{\begin{array}{c} M_{10} \\ M_{11} \end{array}} \left(\begin{array}{c} a_1 \ b_1 \end{array}\right)$$

ightharpoonup Run it on a random $(a_0 b_0)$ to get $(a_1 b_1) := (a_0 b_0) M_{10} = (a_0 b_0) M_{11}$ where M_{10} and M_{11} are the ZT hash values of the colliding messages

▶ Suppose ∃ algorithm finding collisions for the vectorial version...

$$\begin{pmatrix}
a_0 & b_0
\end{pmatrix}
\underbrace{M_{10}}_{M_{11}}
\begin{pmatrix}
a_1 & b_1
\end{pmatrix}
\underbrace{M_{20}}_{M_{21}}
\begin{pmatrix}
a_2 & b_2
\end{pmatrix}$$

- ightharpoonup Run it on a random $(a_0 b_0)$ to get $(a_1 b_1) := (a_0 b_0) M_{10} = (a_0 b_0) M_{11}$ where M_{10} and M_{11} are the ZT hash values of the colliding messages
- ▶ Run it on $(a_1 \ b_1)$ to get $(a_2 \ b_2) := (a_1 \ b_1) M_{20} = (a_1 \ b_1) M_{21}$
- Repeat n+1 times

Key observations

$$\blacktriangleright \ \ \textit{M}_{1j} = \left(\begin{smallmatrix} a_0^{-1} & b_0 \\ 0 & a_0 \end{smallmatrix}\right) \left(\begin{smallmatrix} a_1 & b_1 \\ 0 & a_1^{-1} \end{smallmatrix}\right) + \epsilon_{1j} \left(\begin{smallmatrix} b_0 \\ a_0 \end{smallmatrix}\right) \left(\begin{smallmatrix} a_1 & b_1 \end{smallmatrix}\right)$$

Kev observations

$$M_{1j} = \begin{pmatrix} a_0^{-1} & b_0 \\ 0 & a_0 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ 0 & a_1^{-1} \end{pmatrix} + \epsilon_{1j} \begin{pmatrix} b_0 \\ a_0 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \end{pmatrix}$$

$$M_{1j_1} M_{2j_2} = \begin{pmatrix} a_0^{-1} & b_0 \\ 0 & a_0 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & a_2^{-1} \end{pmatrix} + (\epsilon_{1j_1} + \epsilon_{2j_2}) \begin{pmatrix} b_0 \\ a_0 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \end{pmatrix}$$

Kev observations

$$\qquad \qquad \bullet \ \ \textit{$M_{1j} = \left(\begin{smallmatrix} a_0^{-1} & b_0 \\ 0 & a_0 \end{smallmatrix} \right) \left(\begin{smallmatrix} a_1 & b_1 \\ 0 & a_1^{-1} \end{smallmatrix} \right) + \epsilon_{1j} \left(\begin{smallmatrix} b_0 \\ a_0 \end{smallmatrix} \right) \left(\begin{smallmatrix} a_1 & b_1 \end{smallmatrix} \right)}$$

$$\blacktriangleright \ M_{1j_1}M_{2j_2} = \left(\begin{smallmatrix} a_0^{-1} & b_0 \\ 0 & a_0 \end{smallmatrix}\right) \left(\begin{smallmatrix} a_2 & b_2 \\ 0 & a_2^{-1} \end{smallmatrix}\right) + \left(\epsilon_{1j_1} + \epsilon_{2j_2}\right) \left(\begin{smallmatrix} b_0 \\ a_0 \end{smallmatrix}\right) \left(\begin{smallmatrix} a_2 & b_2 \end{smallmatrix}\right)$$

"Homomorphism"

$$\prod_{i=1}^{k} M_{ij_i} = \begin{pmatrix} a_0^{-1} & b_0 \\ 0 & a_0 \end{pmatrix} \begin{pmatrix} a_k & b_k \\ 0 & a_k^{-1} \end{pmatrix} + \left(\sum_{i=1}^{k} \epsilon_{ij_i} \right) \begin{pmatrix} b_0 \\ a_0 \end{pmatrix} \begin{pmatrix} a_k & b_k \end{pmatrix}$$

Kev observations

$$M_{1j} = \begin{pmatrix} a_0^{-1} & b_0 \\ 0 & a_0 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ 0 & a_1^{-1} \end{pmatrix} + \epsilon_{1j} \begin{pmatrix} b_0 \\ a_0 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \end{pmatrix}$$

$$\blacktriangleright \ M_{1j_1}M_{2j_2} = \left(\begin{smallmatrix} a_0^{-1} & b_0 \\ 0 & a_0 \end{smallmatrix}\right) \left(\begin{smallmatrix} a_2 & b_2 \\ 0 & a_2^{-1} \end{smallmatrix}\right) + \left(\epsilon_{1j_1} + \epsilon_{2j_2}\right) \left(\begin{smallmatrix} b_0 \\ a_0 \end{smallmatrix}\right) \left(\begin{smallmatrix} a_2 & b_2 \end{smallmatrix}\right)$$

"Homomorphism"

$$\prod_{i=1}^{k} M_{ij_i} = \begin{pmatrix} a_0^{-1} & b_0 \\ 0 & a_0 \end{pmatrix} \begin{pmatrix} a_k & b_k \\ 0 & a_k^{-1} \end{pmatrix} + \left(\sum_{i=1}^{k} \epsilon_{ij_i} \right) \begin{pmatrix} b_0 \\ a_0 \end{pmatrix} \begin{pmatrix} a_k & b_k \end{pmatrix}$$

- To find a collision
 - \blacktriangleright Let $\epsilon_i := \epsilon_{i0} + \epsilon_{i1}$
 - ▶ Find $I \subset \{1, 2, ..., n+1\}$ such that $\sum_{i \in I} \epsilon_i = 0$

- Colliding messages:
 - $m = m_{10} || m_{20} || ... || m_{n+1,0}$
 - $m' = m_{1e_1} || m_{2e_2} || ... || m_{n+1,e_{n+1}}$ where $e_i = 1$ if $i \in I$
- ▶ The two messages collide to the value

$$H_{ZT}(m) = \begin{pmatrix} a_0^{-1} & b_0 \\ 0 & a_0 \end{pmatrix} \begin{pmatrix} a_{n+1} & b_{n+1} \\ 0 & a_{n+1}^{-1} \end{pmatrix} + \begin{pmatrix} \sum_{i=1}^{n+1} \epsilon_{i0} \\ i = 1 \end{pmatrix} \begin{pmatrix} b_0 \\ a_0 \end{pmatrix} \begin{pmatrix} a_{n+1} & b_{n+1} \\ a_{n+1} \end{pmatrix}$$

$$= H_{ZT}(m')$$

Projective Zémor-Tillich [PQTZ09]

▶ [PQTZ09]: the output of ZT is 3n bits while its security is n bits: how to extract the secure bits?

Projective Zémor-Tillich [PQTZ09]

- ▶ [PQTZ09]: the output of ZT is 3n bits while its security is nbits: how to extract the secure bits?
- Projective ZT:
 - Outputs n bits
 - ▶ Returns $[a:b] \in \mathbb{P}^1(\mathbb{F}_{2^n})$ if the vectorial version returns $(a \ b)$

Projective Zémor-Tillich [PQTZ09]

- \triangleright [PQTZ09]: the output of ZT is 3n bits while its security is n hits: how to extract the secure hits?
- Projective ZT:
 - Outputs n bits
 - ▶ Returns $[a:b] \in \mathbb{P}^1(\mathbb{F}_{2^n})$ if the vectorial version returns $(a \ b)$
- ▶ If the initial vector is chosen randomly, "nearly" as secure as the original matrix version

"Quasi" equivalence between projective and vectorial versions

- ▶ Suppose ∃ algorithm finding collision for the projective version...
 - ▶ Run it on $(a_0 \ b_0)$ to get $(a_{10} \ b_{10})$ and $(a_{11} \ b_{11}) = \lambda_1 (a_{10} \ b_{10})$
 - ▶ Run it on $(a_{10} b_{10})$ to get $(a_{20} b_{20})$ and $(a_{21} b_{21}) = \lambda_2 (a_{20} b_{20})$
 - After n' steps, find $I \subset \{1, 2, ..., n'\}$ such that $\prod_{i \in I} \lambda_i = 1$

"Quasi" equivalence between projective and vectorial versions

- ▶ Suppose ∃ algorithm finding collision for the projective version...
 - ▶ Run it on $(a_0 \ b_0)$ to get $(a_{10} \ b_{10})$ and $(a_{11} \ b_{11}) = \lambda_1 (a_{10} \ b_{10})$
 - ▶ Run it on $(a_{10} b_{10})$ to get $(a_{20} b_{20})$ and $(a_{21} b_{21}) = \lambda_2 (a_{20} b_{20})$
 - ▶ After n' steps, find $I \subset \{1, 2, ..., n'\}$ such that $\prod_{i \in I} \lambda_i = 1$
- Complexity of last step
 - Hard asymptotically n' discrete logarithms problems + one subset sum problem
 - ▶ Feasible for n < 170