
Université catholique de Louvain

Ecole polytechnique de Louvain
Laboratoire de Microélectronique
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Abstract

Hash functions are an invaluable tool for cryptography. They must primarily
satisfy collision resistance, but standardized hash functions like SHA also
satisfy stronger properties needed for the wide range of their applications.
The design of many hash functions including SHA is based on a compression
function that is close to a block cipher and on a domain extension transform
like Merkle-Damg̊ard. However, recent attacks against the collision resistance
of SHA-1 suggest investigating new designs.

The expander hash design, proposed in the early nineties by Zémor and
Tillich and recently rediscovered by Charles, Goren and Lauter, consists
in defining a cryptographic hash function from an expander graph. The
design is simple and elegant and important hash function properties can be
interpreted as graph properties. When Cayley expander graphs are used,
collision resistance reduces to the hardness of group-theoretical problems.
Although these problems are not classical in cryptography, they appear in
different forms in other fields and in at least one case, they have remained
unbroken since 1994.

This thesis studies the expander hash design, its main strengths and weak-
nesses and the security and efficiency of currently existing instances. We in-
troduce new functions, the Morgenstern hash function and the vectorial and
projective versions of the Zémor-Tillich function. We study the security of
particular constructions. We present new algorithms breaking the preimage
resistance of the LPS hash function and the collision and preimage resis-
tances of the Morgenstern hash function. We improve collision and preimage
attacks against Zémor-Tillich and we describe hard and easy components of
collision search for this function. We capture the malleability of expander
hashes by two definitions of the literature and we describe its positive and
negative consequences for applications. Finally, we introduce ZesT, an all-
purpose hash function based on Zémor-Tillich, keeping its provable collision
resistance and its parallelism but avoiding its malleability. Our function is
provably secure, parallelizable, scalable, admits a wide range of (very) effi-
cient implementations and can be used as a general-purpose hash function.
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Chapter 1

Cryptographic hash functions
from expander graphs

Cryptography has long been the art of spies and soldiers. Nowadays, it is
used everyday by billions of people for securing electronic mail and payment
transactions. In the last thirty years, it has also emerged as a science in its
own right at the crossing point of mathematics and computer science.

The aim of cryptography is to protect information from being stolen or
modified by malicious adversaries. This protection includes integrity, au-
thenticity and confidentiality: information should not be modified without
detection, documents and identities should be authenticated and no secret
information should leak.

In modern cryptography, specific security goals are achieved either with
specially designed algorithms or with the help of some mathematical prob-
lems. The first approach, inherited from block cipher designs, consists in
using algorithms designed to achieve some kinds of random functions as well
as possible. The second approach relies on number-theoretic and group-
theoretic problems that are widely believed to be hard to solve.

This second approach is preferred throughout this thesis. From a the-
oretical point of view, it is more satisfactory as it captures the adversary’s
goal into a short, well-defined mathematical problem that can be studied
by mathematicians independently of the protocol itself. However, with this
approach cryptographic algorithms have a strong mathematic structure that
can be used to attack them outside their original application. At the end of
the thesis, we consequently mix both approaches in the design of the hash
function ZesT.

Hash functions are a fundamental tool in cryptography. While their pri-
mary uses were digital signatures and message authentication codes, they

1



2 CHAPTER 1. HASH FUNCTIONS FROM EXPANDER GRAPHS

appear nowadays in a wide range of applications requiring various properties.
The most important properties ones are preimage and collision resistance: it
must be computationally hard to invert a hash function or to find two inputs
with the same output. Besides, hash functions are often used as perfectly
random functions, in which case collision resistance does not suffice.

There exist old hash function constructions whose collision resistance fol-
lows from the hardness of number-theoretical and group-theoretical problems
[120, 121, 82, 244, 71]. However, these functions can only be used in applica-
tions that only require collision resistance and they are also often too slow for
practice. On the other hand, standardized hash algorithms like SHA follow
the block cipher design: their use is therefore not restricted to collision resis-
tance but their collision resistance is heuristic as it is not established by any
concise and elegant mathematical problem. Actually, recent breakthroughs
against the SHA-1 algorithm have questioned its design, which led NIST1 to
prompt a competition for a new Standard Hash Algorithm [265, 1].

The expander hash design goes back to 1991, when Zémor proposed to
build a hash function from a Cayley graph of a special linear group [274].
This first construction was rapidly broken, but shortly later Tillich and Zémor
proposed a second construction that was resistant to the previous attack [258]
and remains essentially unbroken today. More than ten years later, Charles,
Goren and Lauter [68] rediscovered the expander hash design and proposed
the use of LPS and Pizer Ramanujan graphs.

The expander hash design fundamentally differs from classical hash de-
signs and is very elegant. It allows relating important properties of hash
functions like their collision resistance, their preimage resistance and their
output distribution to the graph-theoretical notions of cycle, girth and ex-
panding constants. When the graphs used are Cayley graphs, the design
additionally provides efficient parallel computation and group-theoretical in-
terpretations of the main hash properties.

The expander hash design, although more than 15 years old, is not very
well known by the cryptographic community. The Zémor-Tillich hash func-
tion is sometimes considered as broken because of existing trapdoor attacks
and attacks against particular parameters. The recent attacks against the
LPS and Morgenstern hash functions have led many people to believe that
the whole design is invalidated, while these attacks actually exploited par-
ticular structure of the LPS and Morgenstern graphs.

Indeed, many natural questions on expander hashes do not find answers
in the literature. Relations between hash, graph and group properties were
sketched in the papers but no precise statement of these relations exist. As

1American National Institute for Standards and Technology [4]



3

the mathematical problems underlying the security of expander hashes do not
belong to classical problems, it is not clear whether the community actually
tried to solve them. Hence their actual hardness remains to be established.
Efficiency aspects have also only been sketched in the literature. Finally,
expander hashes have been seen as theoretical hash functions (meaning with
no chance of being once used in practice) due to their inherent malleability
weaknesses originating from their mathematical structure.

The goal of this thesis is to formalize and prove general properties of
expander hashes, to investigate the actual security and efficiency of exist-
ing constructions and to provide solutions for the inherent weaknesses of the
design. The thesis covers all aspects of expander hashes, from applications
of hash functions to security properties and from the security of particular
instances to their practicability and their efficiency in software and in hard-
ware implementations. In particular, we present new constructions and new
attacks against existing constructions, we study the efficiency and practica-
bility of all existing constructions and we propose approaches to solve the
malleability issues; these achievements are detailed throughout the thesis and
in Section 10.2.

The thesis is organized in three parts totalizing ten chapters, plus five
appendices. Part I contains two chapters introducing cryptography and hash
functions and describing the existing “provable” hash functions, which secu-
rity relates to short mathematical problems. This part can be safely skipped
by cryptographers.

Part II presents the expander hash construction and studies its secu-
rity. Chapter 4 introduces the construction, formalizes security properties,
presents existing instances and relates the design to other hash functions.
Chapter 5 reviews cryptanalytic results on the Zémor-Tillich hash function,
presents new attacks and introduces two variants of the function with reduced
output sizes but the same security. Chapter 6 shows how to find collisions
and preimages for the LPS and Morgenstern hash functions and Chapter 7
is dedicated to the Pizer hash function.

Part III opens perspectives and contains three chapters. Chapter 8 dis-
cusses malleability properties of hash functions and their consequences in ap-
plications, with a focus on the malleability properties of expander hash func-
tions. Chapter 9 introduces the ZesT hash function, a provable hash func-
tion based on Zémor-Tillich that does not have the original weaknesses of the
function but keeps its provable security and its parallelism. Finally, Chap-
ter 10 concludes the thesis, summarizes known results of expander hashes,
enlightens scientific contributions of the thesis and presents important open
problems.
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The appendices provide accessory and background information. Ap-
pendix A contains an exhaustive list of publications by the author; Appendix
B gives some background and pointers to references in mathematics and com-
puter science specific topics; Appendix C gives detailed hash algorithms for
particular parameters of LPS and Morgenstern hash functions; Appendix E
gives examples for our collision and preimage algorithms of Chapter 6.

We now provide background information on cryptographic hash functions.
The reader willing to skip this general literature review may go directly to
the description of expander hashes in Chapter 4. Those looking for specific
information will find pointers to the relevant sections in the index or in the
table of contents.



Part I

Introduction
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Chapter 2

Cryptographic hash functions

Hash functions are one of the most useful but one of the less understood
tools in modern cryptography. Despite of their common “hash function”
denomination, the theoretical functions used to construct message authenti-
cation codes, digital signature schemes or pseudorandom number generators
are very different. Depending on the definition, hash functions may be easy
to construct but of little use, or like “random oracles”, very useful in theory
but practically impossible to build.

In all these definitions, hash functions are compressing functions, mapping
messages of large, arbitrary size to hash values of small, constant size (Figure
2.1):

H : {0, 1}∗ → {0, 1}λ.
 

…101000111001101

Figure 2.1: Representation of a hash function

The weakest notion of cryptographic hash functions, universal hash func-
tions, only requires the output of the hash function to be well distributed.

7



8 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

The most popular ones, preimage and collision resistance, require that it is
computationally hard to invert the function or to find two messages with the
same hash values. The strongest notion, the random oracle model, considers
the hash function as a “perfectly random function”.

To formally capture the meaning of English words like “computationally
hard”, security definitions for hash functions actually apply to families of
functions {Hn}n≥0 parameterized by a security parameter n (rather than to
a single function H), i.e.

Hn : {0, 1}∗ → {0, 1}λ(n)

for some function λ(n). In the literature, a hash function is actually defined
as a family of keyed hash functions

Hn : {0, 1}κ(n) × {0, 1}∗ → {0, 1}λ(n)

for some functions κ(n) and λ(n). Although the keys might not always be
mandatory to establish meaningful security proofs of protocols [231], they
nevertheless seem necessary to formally define the notion of collision resis-
tance in the standard computational model. Sometimes the message size is
fixed in which case the hash function is called a fixed-length hash function,
that is

Hn : {0, 1}κ(n) × {0, 1}µ(n) → {0, 1}λ(n)

for some functions κ(n), µ(n) and λ(n).
Although the formal definitions apply to families of (keyed) hash func-

tions, current standards and most alternative algorithms are unkeyed and
have just been defined for a few values of the security parameter. It is cur-
rent practice to replace the firsts by the seconds in concrete instantiations of
protocols although this approach is flawed in general. Indeed, we may think
of protocols that are secure if the key is randomly chosen but that behave in
a particular insecure way on particular keys corresponding to these concrete
instances. Since expander hashes may be defined asymptotically, we mostly
work with formal definitions in this thesis. Unformal definitions are used
along the text to help providing some intuitions, and in Chapter 9 when we
turn the ZesT hash function into an unkeyed function fulfilling all NIST’s
requirements.

This chapter does not present original contribution but reviews the ba-
sics of cryptographic hash functions. Section 2.1 describes the computational
security framework for cryptographic proofs. Sections 2.2 and 2.3 provide for-
mal definitions of the most important notions of hash functions. Section 2.4
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recalls the Merkle-Damg̊ard construction, a building block in most crypto-
graphic hash functions. Section 2.5 sketches the main general attacks against
hash functions. Section 2.6 discusses applications and Section 2.7 concludes
the chapter and provides pointers to the hash function literature.

2.1 Meaning of “security” in cryptography

2.1.1 Computational security

In this section, we give a formal meaning to the English words efficient algo-
rithm, negligible probability or computationally hard. The definitions below
are taken from [150]; we also follow the lines of their exposition but change
their example from encryption algorithms to collision-resistant hash func-
tions.

Let us consider an intuitive definition of a collision-resistant hash func-
tion: “it is hard to find a collision, that is a couple of messages (m,m′) such
that H(m) = H(m′)”.1 The exact meaning of “collisions are hard to find”
is not “there exists no collision”. Indeed, as hash functions map large input
sets onto small output sets, collisions always exist by the pigeon-hole princi-
ple. One may also try to formalize it as “there exists no algorithm able to
produce a collision”, but let us consider the following two algorithms:

• Algorithm A1 constructs a database of couples (mi, H(mi)). Until it
finds a collision, A1 picks a random message mi, computes hi = H(mi),
checks the database for a previous occurrence of hi (in which case it has
found a collision). If hi has not yet appeared it stores the new couple
(mi, hi) in the database, otherwise it returns the collision found.

• Algorithm A2 picks two random messagesm andm′; it returns (m,m′)
if H(m) = H(m′) and returns ⊥ otherwise.

Algorithm A1 always finds collisions after at most 2λ + 1 hash computations
(and about 2λ/2 in mean, see Section 2.5), and Algorithm A2 produces col-
lisions with a probability at least 1/2λ. However, for λ large enough (in
practice λ is at least 128), any existing computer would require many years
and a prohibitively huge memory to execute Algorithm A1, while Algorithm
A2 will succeed with a probability so small that it can be neglected in prac-
tice.

1As we have already mentioned, the formal definition for collision-resistant hash func-
tions actually requires families of functions rather than functions. We set this technicality
apart until the next section.
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As unconditional security cannot be achieved, cryptographic definitions
take place in the weaker framework of computational security. The algorithms
are required to be efficient and adversarial algorithms may succeed with some
with some negligible probability.

There are two main approaches for computational security. In the con-
crete approach, the security definitions are parameterized by concrete num-
bers: some protocol will be (ε, t,m)-secure in some sense if any algorithm
running in time less than t and using a memory smaller than m, succeeds in
some task with probability smaller than ε. This approach fits well to practice,
for example with t = 260, m = 240 and ε = 2−40.

The second approach is the asymptotical approach. In the case of hash
functions, the asymptotical definitions apply to a family of hash functions
{Hn} indexed by a security parameter n rather than to one single function
H. The hash family {Hn} is secure if each Hn is (ε(n), t(n),m(n))-secure,
the functions t(n) and m(n) do not grow too fast with n, and the function
ε(n) decreases fast enough with n.

Definition 2.1 An algorithm A is efficient or probabilistic polynomial time
or PPT if there exists a polynomial p(.) such that for every input x ∈ {0, 1}∗,
the computation of A(x) (that may involve some probabilistic choices) termi-
nates within at most p(|x|) steps. (For x ∈ {0, 1}∗, |x| denotes the length of
the string x.)

Definition 2.2 A function f is negligible if for every polynomial p(.) there
exists an N such that for all integers n ≥ N it holds that f(n) < 1

p(n)
.

Definition 2.3 A function f is noticeable if there exists a polynomial p(.)
such that for all sufficiently large integers n, it holds that f(n) > 1

p(n)
.

Although it does not explicitly appear in its definition, a PPT algorithm
can not use more than a polynomial amount of memory: indeed, the time
needed even only to read a super-polynomial amount of memory would be
super-polynomial. The notions of negligible and noticeable functions are
“strong negations” one to each other. In particular, there exist functions
that are neither negligible nor noticeable.

An asymptotic security definition always looks as follows:

The cryptographic scheme X is secure in the sense Y if for any
PPT algorithm given an input of size n, there exists a negligible
function ε(n) such that the algorithm succeeds with probability
smaller than ε(n) in performing some task Z.
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Asymptotic definitions are well suited for theory but they do not often fit with
hash functions practice, as standard algorithms like SHA are only defined for
a few values of the security parameter.

Concrete and asymptotic approaches are complementary. In most of the
thesis we use the asymptotic formalism because it allows for “cleaner” proofs
and unlike most hash algorithms, the security of expander hashes can be
expressed in this formalism. In Chapters 5 and 9, we also use the concrete
approach to evaluate the actual security of the Zémor-Tillich and ZesT hash
functions with respect to the best known attacks.

2.1.2 Security reductions

Many theorems in cryptography have the following form:

If the computational assumption X holds, then the cryptographic
scheme Y is secure in the computational sense Z.

Such a theorem reduces the confidence one can have on the security of X
to the confidence one has that the assumption X is true. If X turns out to
be false, this theorem will say nothing about the security of the algorithm Y.
Fortunately, there exist widely believed computational assumptions based on
number theoretic problems that have been challenging mathematicians and
cryptographers for decades or even centuries.

The integer factorization assumption, the discrete logarithm assumption
and the elliptic curve discrete logarithm assumption state that the following
problems are computationally hard to solve.

• Integer Factorization Problem: given a large composite number of
the form n = pq for p, q primes, compute p and q.

• Discrete Logarithm Problem: given a prime p, an element g of Fp
with large prime order, and the element gk mod p for some randomly
chosen k, return the k value.

• Elliptic Curve Discrete Logarithm Problem: given an elliptic
curve E defined over a prime field Fp, a rational point P ∈ E with
some large order, and the point Q = kP for some randomly chosen k,
return the k value.

A security proof by reduction is a proof ad absurdum. The proof first
supposes that there exists an algorithm A breaking the cryptographic scheme
Y with a non-negligible probability. It then describes a reduction algorithm



12 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

A′ that uses A as a subroutine to solve instances of the cryptographic scheme
Z. Finally, the proof shows that A′ contradicts the assumption X, that is A′

solves the corresponding problem with a non-negligible probability.

A

Reduction A’

Instance of Z

Breaking of Z

Instance of X

Solution to X

1

Figure 2.2: Security proof by reduction

This proof technique has been widely applied in cryptography: the exis-
tence of most cryptographic tools has been reduced to the existence of only
two primitives, trapdoor permutations and one-way functions, and both of
them can be constructed under a few widely-believed number theoretical
computational assumptions [136, 226].

2.2 Preimage, second preimage and collision

resistances

Preimage, second preimage and collision resistances are certainly the most
popular security requirements for hash functions. Their intuitive meanings,
as given by [176] are the following:

• Preimage resistance: for essentially all pre-specified outputs, it is
computationally infeasible to find any input which hashes to that out-
put, i.e., to find any preimage m′ such that H(m′) = h when given any
h for which a corresponding input is not known.

• Second preimage resistance: it is computationally infeasible to find
any second input which has the same output as any specified input, i.e.,
given m, to find a second preimage m′ 6= m such that H(m) = H(m′).

• Collision resistance: it is computationally infeasible to find any two
distinct inputs m,m′ which hash to the same output, i.e., such that
H(m) = H(m′).
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We have already given a formal meaning to “computationally infeasible”.
Rogaway and Shrimpton pointed out that the words “essentially all” may also
induce their lot of ambiguities [232]. For families of unkeyed hash functions
there is no sense in saying that “it must be computationally hard to compute
a preimage of 0”, because a (non-uniform) polynomial-time algorithm may
very well have stored in some database one preimage of 0 for each value of
the security parameter and simply access to and return it. For the definition
to make sense, the challenge that the attacker is asked to solve should not be
known in advance. Formal definitions of preimage resistance consequently
include some randomness, either in the value h to which the adversary must
find a preimage, or in the function itself in the case of keyed functions.

In this section, we give asymptotic versions of the seven definitions of
preimage, second preimage and collision resistant hash functions proposed by
Rogaway and Shrimpton, as well as the implications they found out between
the different notions [232]. The definitions apply to keyed hash functions, but
the notions aPre and aSec are also meaningful for unkeyed hash functions
because they fix the key.

First of all, we define a hash function without any particular crypto-
graphic strength.

Definition 2.4 [150] A hash function is a pair of PPT algorithms (Gen,H)
such that

• Polynomial-time indexing: Gen takes as input 1n (a string of n
“ones”, where n is the security parameter) and outputs a key s (which
implicitly contains 1n).

• Polynomial-time evaluation: There exists a polynomial λ such that
H takes as input a key s and a string m ∈ {0, 1}∗ and outputs a string
H(s,m) ∈ {0, 1}λ(n).

We say that (H,Gen) is a fixed-length hash function if the message length
is fixed for each value of the security parameter, that is m ∈ {0, 1}µ(n) for
some function µ(n).

In this definition, the security parameter n is implicit in the key s and the
algorithm H implicitly defines a family of keyed functions Hn : {0, 1}κ(n) ×
{0, 1}∗ → {0, 1}λ(n). We point out that unlike in other cryptographic con-
texts, the keys of hash functions are not aimed to be secret values but rather
to provide a source of randomness necessary in the definitions. All the secu-
rity notions of this section hold in the following definition.



14 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

Definition 2.5 • A hash function (Gen,H) is ePre-secure (resp. Col-
secure) if for any PPT algorithm A, the probability AdvePre,A(Gen,H) (resp.

AdvCol,A(Gen,H)) that A wins some game related to ePre (resp. Col) is neg-

ligible, where the corresponding probabilities AdvePre,A(Gen,H) and AdvCol,A(Gen,H)

are as defined in the following subsections.

• A hash function (Gen,H) is NOTION-secure for messages of length µ

if for any PPT algorithm A, the probability Adv
NOTION[µ],A
(Gen,H) that A wins

some game related to NOTION and parameterized by a function µ, is
negligible. A hash function (Gen,H) is NOTION-secure if for any no-
ticeable function ε, it is NOTION-secure for messages of length µ where
µ(n) = (1 + ε(n))λ(n) and λ is given by Definition 2.4. Here NOTION

can be any of Pre, aPre, Sec, eSec, aSec and the corresponding prob-
abilities Adv

NOTION[µ],A
(Gen,H) are as defined in the following subsections.

The second part of this definition may appear a bit tricky at first sight,
but bounding the message length is necessary for the implication between
collision and preimage resistance [232] to hold (see Section 2.2.4).

2.2.1 Preimage resistance

Rogaway and Shrimpton distinguish three notions of preimage resistance,
depending on where the randomness is introduced. For the notion aPre,
the challenge is random but the key is fixed: the function must be “always”
preimage resistant, that is for any fixed key. For ePre, the key is random
but the challenge is fixed: the function is “everywhere” preimage resistant,
that is for any fixed challenge. Finally, for the notion Pre both the challenge
and the key are random. This latest notion has also been called one-way
function.

Always Preimage Resistance:

Adv
aPre[µ],A
(Gen,H) (n) = max

s∈Gen(1n)
Pr
[
Exp

aPre[µ],s,A
(Gen,H) (n) = 1

]
,

where Exp
aPre[µ],s,A
(Gen,H) (n) is the Exp

aPre[µ],s,A
(Gen,H) (n) is the following experiment
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Experiment Exp
aPre[µ],s,A
(Gen,H) (n):

- a random message m is picked uniformly in
{0, 1}µ(n);

- the hash value h = H(s,m) is given to A;

- A outputs some message m′ ∈ {0, 1}∗;

- Exp
aPre[µ],s,A
(Gen,H) (n) = 1 if and only if H(s,m′) = h.

Everywhere Preimage resistance:

AdvePre,A(Gen,H)(n) = max
h∈{0,1}λ(n)

Pr
[
ExpePre,h,A(Gen,H)(n) = 1

]
,

where ExpePre,h,A(Gen,H)(n) is the following experiment

Experiment ExpePre,h,A(Gen,H)(n):

- a key s is generated by running Gen on input 1n;

- the key s is given to A;

- A outputs some message m ∈ {0, 1}∗;

- ExpePre,h,A(Gen,H)(n) = 1 if and only if H(s,m) = h.

Preimage Resistance:

Adv
Pre[µ],A
(Gen,H)(n) = Pr

[
Exp

Pre[µ],A
(Gen,H)(n) = 1

]
,

where Exp
Pre[µ],A
(Gen,H)(n) is the following experiment



16 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

Experiment Exp
Pre[µ],h,A
(Gen,H) (n):

- a key s is generated by running Gen on input 1n

- a random message m is picked uniformly in
{0, 1}µ(n);

- the key s and the hash value h = H(s,m) are given
to A;

- A outputs some message m′ ∈ {0, 1}∗;

- Exp
Pre[µ],A
(Gen,H)(n) = 1 if and only if H(s,m′) = h.

2.2.2 Second preimage resistance

As for preimage-resistance, Rogaway and Shrimpton introduce three notions
of second preimage resistance: aSec or “always” second preimage resistance,
eSec or “everywhere” second preimage resistance, and Sec or second preim-
age resistance. The second notion is equivalent to the notion of universal
one-way hash function family (UOWHF) introduced by Naor and Yung [192].
The last one is sometimes called weak collision resistance.

Always Second Preimage Resistance:

Adv
aSec[µ],A
(Gen,H) (n) = max

s∈Gen(1n)
Pr
[
Exp

aSec[µ],s,A
(Gen,H) (n) = 1

]
,

where Exp
aSec[µ],s,A
(Gen,H) (n) is the Exp

aSec[µ],s,A
(Gen,H) (n) is the following experiment

Experiment Exp
aSec[µ],s,A
(Gen,H) (n):

- a random message m is picked uniformly in
{0, 1}µ(n);

- the message m is given to A;

- A outputs some message m′ ∈ {0, 1}∗;

- Exp
aPre[µ],s,A
(Gen,H) (n) = 1 if and only if m 6= m′ and

H(s,m′) = H(s,m).
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Everywhere Second Preimage resistance:

Adv
eSec[µ],A
(Gen,H) (n) = max

m∈{0,1}µ(n)
Pr
[
ExpeSec,m,A(Gen,H) (n) = 1

]
,

where ExpeSec,m,A(Gen,H) (n) is the following experiment

Experiment ExpeSec,m,A(Gen,H) (n):

- a key s is generated by running Gen on input 1n;

- the key s is given to A;

- A outputs some message m′ ∈ {0, 1}∗;

- ExpeSec,h,A(Gen,H)(n) = 1 if and only if m 6= m′ and

H(s,m) = h.

Second Preimage Resistance:

Adv
Sec[µ],A
(Gen,H)(n) = Pr

[
Exp

Sec[µ],A
(Gen,H)(n) = 1

]
,

where Exp
Sec[µ],A
(Gen,H)(n) is the following experiment

Experiment Exp
Sec[µ],h,A
(Gen,H) (n):

- a key s is generated by running Gen on input 1n

- a random message m is picked uniformly in
{0, 1}µ(n);

- the key s and the message m are given to A;

- A outputs some message m′ ∈ {0, 1}∗;

- Exp
Sec[µ],A
(Gen,H)(n) = 1 if and only if H(s,m′) =

H(s,m).

2.2.3 Collision resistance

In the collision experiment there is no challenge, hence there is only one
definition of collision resistance. This notion is also sometimes called strong
collision resistance or collision-freeness.
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Collision Resistance:

AdvCol,A(Gen,H)(n) = Pr
[
ExpCol,A(Gen,H)(n) = 1

]
,

where ExpCol,A(Gen,H)(n) is the following experiment

Experiment ExpCol,A(Gen,H)(n):

- a key s is generated by running Gen on input 1n;

- the key s is given to A;

- A outputs two messages m,m′ ∈ {0, 1}∗;

- ExpCol,A(Gen,H)(n) = 1 if and only if H(s,m′) =

H(s,m).

2.2.4 Implications

Roughly, collision resistance implies preimage and second preimage resis-
tance, but the converse is not true [249]. More nuances appear for fixed-
length hash functions; in Figure 2.3, we give the implications between the
different notions as they are provided in [232]. An arrow from notion1 to
notion2 means that any hash function that is secure in the sense of notion1
is also secure in the sense of notion2.

The dashed arrows of Figure 2.3 only hold when the message set is large
enough. In our Definition 2.4 of a hash function, the input of H is a string of
arbitrary length. In the case of fixed-length hash functions, when the input
is restricted to a set of size 2µ, the dashed arrows of Figure 2.3 may not be
true anymore. For example, the inequality

Adv
Pre[µ],A
(Gen,H)(n) ≤ Adv

Sec[µ],A
(Gen,H)(n) + 2λ(n)−µ(n)

from [232] is represented by the dashed arrow between Sec and Pre. It
is meaningful only if the ratio between the input and output sets is large
enough. We refer to [232] for further details on the inequalities represented
by these arrows.

2.3 Other security notions for hash functions

Preimage, second preimage and collision resistance have become the most
popular security notions for hash functions, but there exist many other defi-
nitions.
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Coll

eSec

ePre

Pre

aPre

aSec

Sec

1

Figure 2.3: Relationships among the different security notions of preimage,
second preimage and collision resistance [232]

Hash functions have numerous applications in cryptographic protocols.
As preimage and collision resistance are not always necessary for the security
of these protocols, researchers have been looking for weaker notions that
provide the same security guaranties under slighter assumptions. On the
other hand, some very standard protocols using a hash function are insecure
in general if the function does not satisfy some security requirement beyond
collision resistance; for these protocols there is a need of alternative, stronger
security notions. Today, while the NIST competitors have been trying to
build good hash functions, other researchers in the world are actually trying
to define what kind of function should be built.

In this section, we define Universal Hash Functions (UHF), Pseudoran-
dom Functions (PRF), Perfectly One-Way Hash Functions (POWHF) and
we present the Random Oracle Model (RO), a very useful abstraction for
cryptographic proofs.

2.3.1 Universal hash functions

Universal Hash Functions have been first introduced by Carter and Weg-
man [65]. Intuitively, the hash function used with a random key is required
to behave like a random function on any input. The requirement for UHF
is not computational: it is a statistical property that must hold even for
non-PPT adversaries.
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Definition 2.6 A hash function (Gen,H) is a ε-almost Universal Hash Func-
tion (UHF) if for all n, for all m,m′ ∈ {0, 1}n,

Pr
s∈Gen(1n)

[H(s,m) = H(s,m′)] ≤ ε(n).

The case ε(n) = 2−λ(n) (where λ(n) is given by Definition 2.4) is called
universal [65].

Definition 2.7 A hash function (Gen,H) is a ε-almost Strongly Universal
Hash Function (SUHF) if

• for all n, for all m ∈ {0, 1}n, for all h ∈ {0, 1}λ(n),

Pr
s∈Gen(1n)

[H(s,m) = h] = 2−λ(n);

• for all n, for all m,m′ ∈ {0, 1}n, for all h, h′ ∈ {0, 1}λ(n),

Pr
s∈Gen(1n)

[H(s,m) = h ∧H(s,m′) = h′] ≤ ε(n)2−λ(n),

where λ(n) is given by Definition 2.4.

The smallest possible values for ε are given by ε(n) = 2−λ(n), in which
case the first condition follows from the second one. These functions are
called strongly universal [268, 193].

Universal hash functions have been generalized in many ways. There
exist k-wise versions of these definitions where the hash function with a
random key is required to behave like a random function on any set of k
inputs. The colliding condition H(s,m) = H(s,m′) has been generalized to
H(s,m) ⊕ H(s,m′) = 0 and other relations in Abelian groups. We refer to
[65, 155, 230, 255, 257, 254, 268, 193] for more details and other definitions.

2.3.2 Pseudo-random functions

A hash function is a Pseudorandom Function (PRF) if no PPT algorithm that
is not given the key can distinguish its behavior from the behavior of a truly
random function.

Formally, a truly random function is a function randomly chosen among
some set of functions. For the definition to make sense, this set must be
finite, so a random function with given domain and codomain is defined as
a random function chosen uniformly among the set of all functions with the
same domain and codomain.
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In the definition of a PRF, the PPT adversary has a black-box access
to some functionality called an oracle that implements either the random
function or the PRF with a random key (also called seed in this context). A
hash function is a PRF if no adversary can tell with a probability significantly
better than 1/2 wether he is interacting with the PRF or the truly random
function.

Definition 2.8 A Hash Function (Gen,H) is a Pseudorandom Function
(PRF) if for any PPT algorithm A, the function

AdvPRF,A(Gen,H)(n) :=
∣∣∣Pr
[
ExpPRF,1,A(Gen,H)(n) = 1

]
− Pr

[
ExpPRF,0,A(Gen,H)(n) = 1

]∣∣∣
is a negligible function, where ExpPRF,1,A(Gen,H)(n) and ExpPRF,0,A(Gen,H)(n) are defined
below.

Experiment ExpPRF,0,A(Gen,H)(n):

- a function f is chosen
randomly among the set
of functions with domain
{0, 1}n and codomain
{0, 1}λ(n);

- A makes any number of
queries to its oracle, that
are messages mi ∈ {0, 1}n;

- the oracle answers to each
query mi by f(mi);

- A returns some bit b.

Experiment ExpPRF,1,A(Gen,H)(n):

- a key s is generated by run-
ning Gen on input n;

- A makes any number of
queries to its oracle, that
are messages mi ∈ {0, 1}n;

- the oracle answers to each
query mi by H(s,mi);

- A returns some bit b.

The requirement of being pseudorandom seems much stronger than colli-
sion resistance but the two notions cannot be related in general [229]. Unlike
for collision resistance, the security of a hash function as a PRF entirely de-
pends on the secrecy of the seed: the definition gives no security guaranty
if the seed is known to the adversary. In particular, in this security model,
the adversary must even be denied the ability to compute the hash function
itself because this computation would require the knowledge of the seed.
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2.3.3 Perfectly one-way probabilistic hash functions

Perfectly one-way functions (POWHF) were introduced in 1997 by Canetti [61]
as part of a research program investigating new security definitions for hash
functions to replace the random oracle model. The primitive was first called
Oracle Hashing, and recalled POWHF by Canetti et al. [64]. POWHFs are
aimed to be hash functions whose outputs hide all partial information on the
corresponding inputs.

Perfectly one-way hash functions are probabilistic; unlike the functions
of Definition 2.4, the output of the hash algorithm is not constant. To check
correctness of a hash computation, probabilistic hash functions are given a
third algorithm V er.

Definition 2.9 A probabilistic hash function is a triple of PPT algorithms
(Gen,H, V er) such that

• Polynomial-time indexing: Gen takes as input 1n (a string of n
“ones”, where n is the security parameter) and outputs a key s (which
implicitly contains 1n).

• Polynomial-time evaluation: There exist polynomials λ(n) and
ρ(n) such that H takes as input a key s, a string m ∈ {0, 1}∗ and a
randomizer r ∈ {0, 1}ρ(n), and outputs a string H(s,m, r) ∈ {0, 1}λ(n).

• Completeness: For any key s, message m and randomizer r, the
probability Pr[V er(s,m,H(s,m, r)) 6= 1] is a negligible function of n.

A perfectly one-way hash function is a probabilistic hash function that is
collision resistant and hides any partial information on its input.

Definition 2.10 A perfectly one-way hash function (POWHF) is a proba-
bilistic hash function (Gen,H, V er) satisfying the following requirements.

• Correctness/ Collision resistance: for any PPT algorithm A, on
input s, a triplet (m,m′, h) such that m 6= m′ and V er(s,m, h) =
V er(s,m′, h) = 1 is negligible.

• Secrecy: For any s ∈ {0, 1}κ(n), any PPT algorithm A with binary
output and any well-spread distribution ensemble {Dn}, the distribu-
tions of m||A(H(s,m, r) and of m||A(H(s,m′, r)) are computationally
indistinguishable when r is randomly picked in {0, 1}ρ(n) and m,m′ are
independently drawn according to Dn.
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In this definition, a distribution ensemble {Dn} is well-spread if the largest
probability of any element drawn by Dn is a negligible function of n. Two
distribution ensembles are computationally indistinguishable if for any PPT

algorithm A, the difference |Pr[A(x) = 1] − Pr[A(y) = 1]| is a negligible
function of n when x and y are drawn independently according to each of
the two distribution ensembles.

The meaning of Definition 2.10 is that POWHFs hide all information on
their inputs. An equivalent definition is provided by Canetti [61] meaning
that the information received with the hash value of a message m is not more
useful than the information provided by an oracle returning 1 on input m
and 0 on any other input.

POWHFs have practical limitations but are an interesting step toward
replacing random oracles. The security of POWHFs requires producing good
trusted random bits for the randomizers, which is a non-trivial task in its own
right. Moreover, many cryptographic protocols including standard ones have
been built upon non-probabilistic hash functions. On the other hand, the
notion captures important properties of random oracles and unlike random
oracles, it can be instantiated based on standard cryptographic assumptions
[61, 64, 63].

2.3.4 The Random Oracle model

The random oracle model has been proposed by Bellare and Rogaway [41],
building on previous works that were implicitly using the same approach [117,
116, 100, 139, 162]. Random oracles have been widely used in cryptography
to prove the security of simple and efficient protocols that could not be proved
in the standard model (as opposed to the random oracle model). However,
since the random oracle methodology is not sound [63], the current tendency
in cryptography is to prefer protocols secure in the standard model even if
they are less less efficient.

A random oracle receives as input messages mi ∈ {0, 1}∗ and returns
hash values hi ∈ {0, 1}λ as follows: If it was not previously queried on mi

the oracle picks a random value hi ∈ {0, 1}λ, stores (mi, hi) in some database
that it maintains, and returns hi. If it was previously queried on mi it returns
the corresponding hi value stored in its database.

The random oracle paradigm, as described in [41] is the following: To
devise a protocol P for some protocol problem Π,

1. Find a formal definition for Π in the model of computation in which
all parties (including the adversary) share a random oracle R;
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2. Devise an efficient protocol for Π in the random oracle model;

3. Prove that P satisfies the definition of Π;

4. Replace (instantiate) oracle access to R by computation of a “good”
hash function.

By a “good” hash function, Bellare and Rogaway mean one with no appar-
ent structure. In their paper, they propose simple modifications of MD5 [227]
and SHA [14] that could be used for this purpose.

The random oracle paradigm has been and remains widely used in cryp-
tography but, as pointed out by Canetti, Goldreich and Halevi [63] it does not
provide any security guaranty by itself. Indeed, any signature or encryption
schemes secure in the random oracle model can be transformed into other
signature or encryption scheme that are still secure in the random oracle
model but insecure for any concrete instantiation of the random oracle.

Similarly, Goldwasser and Kalai [119] have shown that the Fiat-Shamir
heuristic (see Section 2.6.2), although secure in the random oracle model, is
not sound either: there exists a three round authentication scheme, which
does not give a secure signature scheme when Fiat-Shamir is applied to it
with any efficient hash function.

Nielsen [194] has shown that non-interactive non-committing encryption
schemes do exist in the random oracle model but not in the standard model.
This result is stronger than the previous ones because it rules out any trans-
formation from the random oracle model to the standard model, not only
the transformations where the random oracles are instantiated by concrete
functions.

To provide some intuition on these results, let us consider a weaker version
of Canetti, Goldwasser and Halevi’s result for signatures [63]: for any hash
function H = (Gen,H), there exists a signature scheme secure in the random
oracle model but insecure if instantiated with H.

Suppose you have a signature scheme secure (see Section 2.6.2 for def-
initions) in the random oracle model. The modified signing algorithm is
defined such that it remains unchanged in most inputs, but leaks the sig-
nature scheme’s secret key on inputs m such that the oracle answer R(m)
belongs to the set {H(s, s)|s ∈ {0, 1}κ(n)}.

If this modified algorithm is instantiated with H, after receiving the hash
key s an adversary can simply ask for a signature on s, after which he gets
the private key of the signature scheme and can sign any message of his
choice. However, in the random oracle model the adversary is unlikely to
find a message that will produce the key leakage, hence the scheme remains
“secure”.
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This example and other ones leading to similar results may appear con-
trived, but they still provide a warning that a proof of security in the ran-
dom oracle model does not give any guaranty in itself for the security of
the scheme instantiated with a concrete hash function. No “natural” cryp-
tographic scheme secure in the random oracle has ever been attacked when
instantiated with a “good” hash function, and nobody will ever design a sig-
nature scheme that explicitly returns its secret key even on particular values.
However, as these examples show flaws in the random oracle model, we may
fear other flaws, potentially damaging, on more natural protocols. At least,
these examples enlighten that our understanding of hash functions is still
uncomplete and that better definitions are desirable.

Random oracles are practical but dangerous. Today, the cryptographic
community is somehow divided into those who reject the above examples as
unnatural and still use the random oracle model for its great practical ad-
vantages (although they acknowledge that the random oracle model does not
strictly give them any security guaranty), and those who fear more damage-
able misunderstandings of random oracles and press people to avoid them
(although they reckon that most applications of random oracles are probably
safe). A proof in the random oracle model provides a useful sanity check
on the protocol, but “natural” cryptographic schemes that are only proved
secure in the random oracle model are only probably, not provably, secure in
practice.

2.4 The Merkle-Damg̊ard transform

Most cryptographic hash functions are built upon two main components: a
compression function and a domain-extension transform. The compression
function hashes messages of a fixed size to hash values of fixed, smaller size;
the domain-extension transform uses the compression function as a building
block to construct hash functions with arbitrary-length inputs.

The Merkle-Damg̊ard transform (Figure 2.4) was independently discov-
ered by Damg̊ard [83] and Merkle [178]; it is used most notably in the MD+

and SHA families of hash functions. The compression function f takes as
input a key s and a message of size µ + λ, and returns a bitstring of size λ;
it is assumed to be collision-resistant. The Merkle-Damg̊ard transform of f
takes as input a key s and a message m of length L smaller2 than 2λ, and

2The restriction on the size of the messages has no practical influence. For parameters
λ of interest, 2λ is far larger than the size of messages that will be hashed in practice.
Moreover, the MD transform can also process larger messages if the message lengths are
coded on more than one block.
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...IV = h0

m0 m1 mN−1 mN

h1 hN
H(s,m)

f(s, .) f(s, .) f(s, .) f(s, .)

MD-strengtheningm

1

Figure 2.4: Merkle-Damg̊ard transform

returns a bitstring of size λ.
From a message m, the MD-strengthening produces N + 1 bitstrings

m0, ...,mN+1 of size µ, where N = dL/µe. The message m is first decom-
posed into N blocks of µ consecutive bits. If L is not a multiple of µ, the
last block is completed with zeroes. An additional block is constructed that
contains a binary representation of L on λ bits.

Let h0 = IV be some fixed initial value. The Merkle-Damg̊ard transform
of f is defined as Hf (s,m) = hN+1, where

hi = f(s, hi−1||mi−1).

The Merkle-Damg̊ard transform satisfies the following property:

Theorem 2.1 (Merkle-Damg̊ard) If (Gen, f) is a fixed-length collision
resistant hash function, then (Gen,H) is a collision-resistant hash function.

The proof of this theorem is easy. Intuitively, suppose an adversary finds m 6=
m′ such that Hf (s,m) = Hf (s,m

′). Write mi and m′i for the output blocks of
the MD-strengthening of m and m′, and hi and h′i for the intermediate values
of the computation of Hf (s,m) and Hf (s,m

′). Then there exists i ≤ n + 1
such that hi = h′i but hi−1||mi−1 6= h′i−1||m′i−1, so the adversary has found
a collision (hi−1||mi−1, h

′
i−1||m′i−1) on the compression on the compression

function.
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The assumptions on f in Theorem 2.1 can be slightly relaxed [76]. Damg̊ard
also proposed a variant of the transform, using a binary tree, that satisfies
the same property and allows for bigger parallelism [83]. As computers in
the nineties were unable to exploit this parallelism, the serial version was
preferred for its shorter memory requirements.

The Merkle-Damg̊ard transform is a domain-extending collision resistance-
preserving transform: it transforms a fixed-length collision resistant hash
function into an arbitrary-length collision resistant hash function. However,
it does not preserve other properties like preimage resistance, second preim-
age resistance, pseudo-randomness and indistinguishability from a random
oracle.

There exist many alternative transforms that preserve different proper-
ties. Shoup gave a transform preserving the UOWHF or everywhere preim-
age resistance property [246], but at the cost of a key length increase. The
ROX transform of Andreeva et al. [28] preserves the seven security notions
of Rogaway and Shrimpton. Coron et al. [78] gave a transform preserving
the property of indistinguishability from a random oracle. Finally, the EMD
transform of Bellare and Ristenpart [40] preserves collision resistance, pseu-
dorandomness and indistinguishability from a random oracle.

In a different vein, Herzberg [130], Fischlin and Lehmann [103, 104] and
Fischlin et al. [105] proposed multi-property combiners, combining various
hash functions in such a way that if any of them satisfies one security prop-
erty, the combined function also satisfies this property.

2.5 Popular attacks on hash functions

An attack on a cryptographic protocol is a proof that this protocol does not
satisfy its claimed security properties. Attacks on hash functions have been
mainly targeting the collision and preimage resistance properties.

In the asymptotic setting, an attack against the collision resistance of
a hash function is a PPT algorithm that finds collisions for asymptotically
large values of the security parameter. In practice, many hash functions are
only defined for a finite small set of values of the security parameter, so the
meaning of PPT algorithm lacks sense.

Because the codomain of any concrete hash function is a finite set, there
exist attacks called generic that cannot be avoided but by fixing large enough
parameters. The exhaustive search attack and the random trial attack find
preimages for any hash function in a time proportional to the codomain size
while the birthday attack only requires the square root of this time to find
collisions. In practice, a preimage or a collision attack is often considered
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successful if it computes preimage or collisions faster than these generic at-
tacks.

Iterated hash functions are not generic hash functions. Their inherent
structure allows for more attacks, among which the fixed point attack, Joux’
multicollision attack, and in some cases the meet-in-the-middle attack [145,
220]. These functions are also good targets for differential cryptanalysis
because their compression functions share many characteristics with block
ciphers [43, 91, 92, 67, 266, 265].

In this section, we first give approximate boundaries between “feasible”
and “not feasible” attacks. We then describe generic preimage and collision
attacks, attacks on iterated hash functions, and differential cryptanalysis.
Finally, we argue on the utility of “random-looking” colliding messages and
discuss some attacks targeting properties beyond the preimage and collision
resistance.

2.5.1 Complexity limits for the feasibility of attacks

The boundary between a “feasible” attack and a “non-feasible attack is not
precise as it strongly depends on the resources the attacker is up to invest in
order to find collisions. The feasibility is usually estimated in terms of time
and memory complexities, to which we add the lengths of hashed messages.

Today in 2009, attacks running in time 260 are feasible by large computers
clusters and attacks in time 280 are believed to be infeasible. According to
Lenstra and Verheul’s recommendations for the key lengths of symmetric
cryptographic [164, 163], the current limit is 74 bits if we believe that DES
was secure until 1982, which it was with respect to most adversaries but
probably not for large companies and governmental agencies. In the table
below, we show their recommendations for the years 2009-2016, assuming
DES was secure until 1982 or 1980 [112].

Year 2009 2010 2011 2012 2013 2014 2015 2016
Hyp. 1982 74 75 76 77 77 78 78 79
Hyp. 1980 76 76 77 78 78 79 80 80

Setting apart all the engineering problems of managing a huge cluster of
memory disks, the practical limit for memory can be first evaluated by its
cost. As a memory hard disk of 1TB (240) costs today about 100 �, we may
estimate that attacks with memory requirements above 265 or 270 are not
feasible today even for big governmental agencies (as an example, in 2008
the CERN had a distributed computing and data storage infrastructure to
store annually 15PB (257) of data from the Large Hadron Collider [6]).
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In practice, memory access is often more expensive than memory itself.
Processing data on an external disk is considerably slower than processing
data on RAM. Therefore, an attack requiring to read and write 260 bits of
data may already be considered infeasible even for big governmental agencies,
simply because the memory accesses will increase a lot the execution time.

Besides these two standard criteria, we will consider a third feasibility
criterium of attacks, namely the size of the messages produced. For the
Cayley hash functions discussed in this thesis, there exist trivial collision
attacks that are efficient both in time and memory but still not practical as
the colliding messages they produce have size far too large for any reasonable
application. In most applications, hash functions process messages of a few
kb or Mb; when large disks are hashed it may make sense to consider messages
of size 240 to 250. On the other hand, messages of size 260 will never be hashed.

2.5.2 Generic attacks

Exhaustive search and random trials. Given the value h of a randomly
chosen message, an adversary can find a preimage m such that H(s,m) = h
(where the key is known by the adversary) by trying successive values m =
1, 2, ... until he finds a preimage. If the output is of λ size, the attack re-
quires expected time 2λ. Finding preimages of various hash values hi requires
essentially the same time if the key is not changed for each computation. Al-
ternatively, the adversary can test random messages among some finite set
larger than 2λ and also succeed in expected time 2λ.

Birthday attack. For a group of 23 people, the probability that at least
two persons were born on the same day is larger than 1/2. As typically 365
persons are supposed to be needed, this phenomenon is called the birthday
paradox even if it is not strictly paradoxical. Similarly, if the codomain of
a practical hash function is of 2λ size, an adversary can find collisions after
2λ/2 hash computations on random messages.

Indeed, let N = 2λ the number of output values. The probability to find
collisions after N ′ = 2λ/2 random trials is

Pr[col] = 1− N

N

N − 1

N
...
N −N ′ + 1

N

= 1−
(

1− 1

N

)(
1− 2

N

)
...

(
1− N ′ − 1

N

)
.

Using Taylor’s first order approximation ex ≈ 1 + x we get

Pr[col] ≈ 1− e−
1
N
− 2
N
−...−−N′+1

N ≈ 1− e−
N′2
2N ≈ 0.4.



30 CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS

The birthday attack was first pointed out by Yuval [273]; it requires time
and memory 2λ/2. The memory requirements were dropped to negligible
by Quisquater and Delescaille [219] by translating the collision problem to
the problem of detecting cycles in an iterative mapping. In the modified
birthday attack, instead of choosing the messages randomly, the adversary
chooses them deterministically according to the previous hash value. This
induces a deterministic mapping on a finite set that will eventually repeat,
therefore producing cycles. The advantage of this approach is that there is no
need to store all the hash values; the adversary may store only distinguished
points, for example those values beginning with a large number of zero bits.
The modified birthday attack requires essentially the same 2λ/2 time and
a negligible memory. Moreover, a parallel version has been given by van
Oorschot and Wiener [261]. Other techniques for removing requirements in
cycle-detection methods are reviewed by Shamir in [242].

2.5.3 Attacks on iterated hash functions

Hash functions that iterate a compression function, for example with the
Merkle-Damg̊ard transform, are sensitive to more efficient attacks than the
generic attacks.

Meet-in-the-middle attack. If the compression function is invertible,
preimages can be computed in a time roughly 2λ/2 by extending the birthday
attack as follows: apply the compression function to 2λ/2 random messages
and apply it backward to 2λ/2 other random messages. By the birthday para-
dox, there is a large probability that the adversary finds a common value “in
the middle”. The attack also has a memory-free version [220]; it is not fea-
sible if the compression function is preimage resistant.

Fixed point attack. The idea of this attack is to look for an intermediate
value hi−1 and a message block mi such that f(s, hi−1||mi) = hi−1. The
attack allows inserting any number of blocks mi without changing the hash
value. In a Merkle-Damg̊ard construction, it becomes very practical if the
IV can be selected by the adversary.

Multicollision attack. By the birthday paradox, a collision can be found
to a compression function in time 2λ/2. Repeating the collision search λ/2
times, an adversary can find message blocks m1,m

′
1,m2,m

′
2, ...,mλ

2
,m′λ

2

such
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that

h1 := f(s, h0||m1) = f(s, h0||m′1)

h2 := f(s, h1||m2) = f(s, h1||m′2)

...

hλ
2

:= f(s, hλ
2
−1||mλ

2
) = f(s, hλ

2
−1||m

′
λ
2

).

These message blocks can be combined into 2λ/2 messages of λ/2 blocks that
hash to the same value. Finding these “multicollisions” hence requires time
only λ

2
2λ/2 while on an ideal function it would require a time 2λ(2λ/2−1)/2λ/2 ≈

2λ.
This observation has been used by Joux [145] to improve the birthday

attack on a class of hash functions. Suppose G,H : {0, 1}κ × {0, 1}∗ →
{0, 1}λ are two hash functions with ideal collision-resistance (meaning that
the best attack has expected time 2λ/2). If G and H were ideal, the func-
tion F (s,m) := G(s,m)||H(s,m) would have ideal collision-resistance in 2λ.
However, if G is an iterated hash function, an adversary can construct 2λ/2

collisions for G in time λ
2
2λ/2. By the birthday paradox, these 2λ/2 messages

are likely to give one collision for H, hence for F .

2.5.4 Differential cryptanalysis

After Biham and Shamir introduced it for key recovery on block ciphers [43],
differential cryptanalysis has also been applied to stream ciphers and to most
dedicated hash functions. As stated by Dobbertin [91], the basic idea is that
a (small) difference between only one of the input variables can be controlled
in such a way that the differences occurring in the computations of the two
associated hash values are compensated for at the end. The art of differential
cryptanalysts is to find good differential paths through the whole algorithm
computation.

Most attacks on dedicated hash functions use extensions of this idea
[91, 92, 67, 266, 265]. Differential cryptanalysis has been applied mainly
on unkeyed, Merkle-Damg̊ard-based hash functions to find collisions of the
form f(s, h||m) = f(s, h||m′) on the compression function. As unkeyed hash
functions are targeted, the key s can be considered as fixed. The value h
is considered as random, which is realistic because in a Merkle-Damg̊ard
construction it is the output of the compression function from the previous
round.

The compression functions of recent hash algorithms have a lot of rounds
that improve the bit interdependencies through non-linear functions; it is
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therefore no longer possible to find a full differential path resulting in a
collision for the compression function with a probability 1. However, the
cryptanalyst can search in all stages of the algorithm for particular differ-
ences in the input bits that with a large probability (on the value h) will
result in small differences a few stages later. Combining these differentials
appropriately to cancel differences may lead to a collision at the end of the
hash computation with some probability: when the attack is repeated, it is
likely to succeed after a time inversely proportional to this probability.

Near-collisions (messages whose hash values differ by only a few bits) are
also targeted by differential attacks, in which case a full collision is obtained
by iterating the attack, to produce a pair of colliding messages whose lengths
are a few block long [42].

2.5.5 On “meaningful” collisions

When a new collision attack is found, the messages it produces most often
have the form of apparently random bits. These collisions have no chance
to be meaningful for any high-level application of hash functions so at first
sight they should not threaten the security of these applications.

This opinion is erroneous in two ways. First, attacks get improved over
the years; they become faster and allow for more structure on the collid-
ing messages. Second, collisions are meaningful in some applications, and
meaningless collisions can often be turned into useful ones: Lucks and Daum
have shown how to build two PS files with the same signature using MD5
collisions [169], Gebhardt et al. have extended their ideas to PDF, TIFF and
Word97 formats [110] and Stevens et al. have produced colliding MD5 based
X.509 certificates [252].

2.5.6 Beyond collision resistance

Attacks on hash functions have been mainly targeting their preimage, sec-
ond preimage and collision resistance because these are the most popular
security requirements for hash functions. For applications requiring PRFs or
random oracles there exist many more kinds of attacks, sufficient to break
some cryptographic schemes.

The most popular one targets near-collision resistance: a near-collision is
made of two messages that produce the same hash value up to a few bits.
Clearly, near-collisions may break the security of schemes that truncate the
output of the hash function before usage. Near-collisions on a compression
function can also sometimes be turned into a full collision for the hash func-
tion [42].
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Figure 1: A hash function is used as a Swiss army knife

1

Figure 2.5: Hash functions are an invaluable tool for such a wide range
of cryptographic applications that they have been compared to Swiss army
knives

Hash functions are often used to destroy the algebraic structure of other
schemes. To this end, they should of course not present the same struc-
ture. A hash function with a complementarity property used with DES, or a
function with multiplicative properties used in the RSA signature protocol,
would introduce significant security threats [27]. On the other hand, many
hash functions that are provably collision resistant have this kind of weak-
nesses because of their mathematical structure. We will further discuss these
malleability properties in Chapter 8.

2.6 Applications

Hash functions are an invaluable tool for such a wide range of cryptographic
applications that they have been compared to Swiss army knives [101].

The main usages of hash functions are message authentication codes
(MACs) and digital signature algorithms but they have also been used (among
other applications) to build commitment schemes and pseudorandom number
generators, for entropy extraction, and to protect password databases.

2.6.1 Message authentication codes

Message authentication codes (MAC) are a fundamental tool to guaranty
the integrity of documents. Suppose a bank receives the following order from
Alice “Send �1000 to Bob”. The bank needs to be sure that the message
has not been modified: for example, that Bob did not intercept a message
saying “Send �10 to Bob” or “Send �1000 to Charly” and modify it in its
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interest before forwarding it to the bank. Message authentication codes can
be used to prevent such attacks.

A message authentication code is made of three algorithms. The key-
generation algorithm produces a secret key s to be shared between Alice and
the bank; the tag-generation algorithm produces a tag t from a message m
and a key s; finally, the verification algorithm receives a key s, a message m
and a tag t, and decides whether t is a valid tag or not.

A MAC is secure if it is existentially unforgeable under an adaptive chosen-
message attack : no adversary, after receiving valid tags on any message of
his choice, should be able to produce a valid tag on a new message of his
choice [37].

Definition 2.11 A message authentication code (or MAC) is a triple of
PPT algorithms M = (Gen,Mac, V er) such that

• The key-generation algorithm Gen takes as input 1n and outputs a key
s with |s| ≥ n;

• The tag-generation algorithm Mac takes as input a key s and a message
m ∈ {0, 1}∗, and outputs a tag t;

• The deterministic verification algorithm V er takes as input a key s, a
message m and a tag t. It outputs a bit b, with b = 1 meaning valid
and b = 0 meaning invalid.

Moreover, it is required that for every n, every key s that has been output by
Gen(1n), every m ∈ {0, 1}∗, and every t that has been output by Mac(s,m),
we have V er(s,m, t) = 1.

The triple of PPT algorithms (Gen,Mac, V er) is called a fixed-length MAC
for messages of length µ if the algorithm Mac is only defined for messages of
length µ, and the algorithm V er outputs 0 on messages of a different size.

Definition 2.12 A MAC M = (Gen,Mac, V er) is secure or existentially
unforgeable under adaptive chosen-message attacks if for all PPT algorithms
A, the probability

AdvForge,AM (n) := Pr
[
ExpForge,AM (n) = 1

]
is negligible, where ExpForge,AM is defined below.
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Experiment ExpForge,AM (n):

- a key s is generated by running Gen on input 1n;

- the adversary A has an oracle access to Mac(s, .):
he sends queries mi of his choice and receives the
corresponding Mac(s,mi);

- the adversary A outputs a pair (m, t);

- ExpForge,AM = 1 if V er(s,m, t) = 1 and the adver-
sary had not queried his oracle on m.

Unlike hash function keys, MAC keys are secret values. Secure fixed-
length MACs can be constructed from PRFs, and used in turn to construct
secure MACs; we refer to [150] for more details. However, there exists no
construction of a secure MAC based on CRHF.

The most common constructions of message authentication code are the
HMAC and NMAC of Bellare, Canetti and Krawczyk [33, 34] that have been
incorporated into an American federal standard [15].

The construction NMAC uses two random keys k1, k2, a compression
function f and the Merkle-Damg̊ard transform as follows. First, the Merkle-
Damg̊ard transform of the message is computed with k2 as initial value; then,
the result is passed again to the compression function together with the other
secret key k1 (see Figure 2.6.1).

A fixed-length variant of this construction is obtained by replacing the
Merkle-Damg̊ard transform by a single compression function evaluation. The
security of NMAC is not implied by the collision-resistance of f ; some addi-
tional pseudo-randomness properties are at least necessary. However, NMAC
is a secure MAC if its fixed-length variant is a secure MAC and the compres-
sion function is collision-resistant [150].

The HMAC construction can be seen as a particular instance of NMAC,
where the keys k1 and k2 are generated from a single key k as follows

k1||k2 := G(k) = f(s, IV ||(k ⊕ opad))||f(s, IV ||(k ⊕ ipad)).

The value opad is defined as the byte “0x36” repeated as many times as
needed; the value ipad is defined similarly with the byte “0x5C”. The ad-
vantage of HMAC over NMAC is that it can be defined from any iterated
hash function without changing its initial value. It is secure if the correspond-
ing NMAC construction is secure and the output of G is “indistinguishable
from random bits” (that is, if G is a pseudorandom number generator) [150].
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Figure 2.6: NMAC construction from a compression function f

Alternatively to NMAC and HMAC, Black et al. have proposed UMAC,
a construction based on a pseudorandom function (in practice, a block cipher
or a hash function) and a universal hash function. The construction is much
faster than NMAC and HMAC and is secure if the block cipher or the hash
function used is a pseudorandom function [45]. UMAC has also been stan-
dardized but is much less popular than HMAC today. Constructions based
on block ciphers are discussed in Section 3.4 and previous constructions are
reviewed in [217, 218].

2.6.2 Digital signatures

Like message authentication codes, digital signatures can be used to ensure
integrity of documents. Digital signature schemes can be constructed from
CRHF or UOWHF; they are typically much slower to compute than MACs
but present a few practical advantages.

Digital signatures are public key primitives: each signer has a pair of keys
(pk, sk). The secret key sk is used by its owner to sign messages, and the
public key pk is used to verify a signature. While the verification of a MAC
requires the knowledge of a secret key, a signature is publicly verifiable hence
no preliminary key agreement is necessary, the signature may be transferred
and it cannot be repudiated [150].
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The definition and the security model of a digital signature scheme are
very close to those of a MAC.

Definition 2.13 A signature scheme is a triple of PPT algorithms S =
(Gen, Sig, V er) such that

• The key-generation algorithm Gen takes as input 1n and outputs a pair
of (public, private) keys (pk, sk);

• The signing algorithm Sig takes as input a private key sk and a mes-
sage m ∈ {0, 1}∗, and outputs a signature σ;

• The deterministic verification algorithm V er takes as input a public
key pk, a message m and a signature σ. It outputs a bit b, with b = 0
meaning valid and b = 1 meaning invalid.

Moreover, it is required that for every n, every (pk, sk) output by Gen(1n),
every m ∈ {0, 1}∗, and every σ that has been output by Sig(sk,m), we have
V er(pk,m, σ) = 1.

The triple of PPT algorithms (Gen, Sig, V er) is called a fixed-length sig-
nature scheme for messages of length µ if the algorithm Sig is only defined
for messages of length µ, and the algorithm V er outputs 0 on messages of a
different size.

Definition 2.14 A signature scheme S = (Gen,Mac, V er) is secure or ex-
istentially unforgeable under adaptive chosen-message attacks if for all PPT
algorithms A, the probability

AdvForge,AS := Pr
[
ExpForge,AS = 1

]
is negligible, where ExpForge,AS is defined below.

Experiment ExpForge,AS :

- Gen(1n) is run to obtain keys (pk, sk);

- the adversary A has oracle access to Sig(sk, .): he
sends queries mi of his choice and receives the cor-
responding Sig(sk,mi);

- the adversary A outputs a pair (m,σ);

- ExpForge,AS = 1 if V er(pk,m, σ) = 1 and the ad-
versary had not queried his oracle on m.
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In theory, the usual way to build a secure signature scheme is to first build
a secure one-time signature scheme, which is a signature scheme satisfying the
weaker security property that the adversary is not able to forge a signature if
he queries his oracle only once [159]. The construction leads to secure schemes
from collision-resistant hash functions, but the schemes are not efficient at
all. In practice, many signature schemes are constructed using either the
hash-and-sign paradigm or the Fiat-Shamir transform, resulting in efficient
schemes but only secure in the random oracle model.

A secure signature scheme can be built from a secure one-time signature
scheme by refreshing the keys: at each signature, a new public key is issued
and signed together with the message. One-time signature schemes can be
constructed with one-way functions [159] hence from CRHF (because collision
resistant hash functions are one-way functions). Naor and Yung have shown
that Universal One-Way Hash functions are actually sufficient [192].

The hash-and-sign paradigm is to construct signature schemes by first
hashing the messages then signing them with a fixed-length signature scheme.

Let S = (GenS , Sign, V er) be a fixed-length signa-
ture scheme and H = (GenH, H) be a hash function.
The hash-and-sign paradigm is to construct a signature
scheme S ′ = (Gen′, Sign′, V er′) as follows

• Gen′: on input 1n, runGenS to obtain (pk, sk) and
run GenS to obtain s, then return (pk||s, sk||s);

• Sig′: on input a private key pk||s and a message
m ∈ {0, 1}∗, return σ = Sig(sk,H(s,m));

• V er′: on input a public key pk||s, a message m ∈
{0, 1}∗ and a signature σ, output 1 if and only if
V er(pk,H(s,m), σ) = 1.

The hash-and-sign paradigm extends the domain of S and increases its
speed without weakening its security. Signing very long messages would re-
quire very large parameters if they were not hashed first, with a catastrophic
loss in efficiency. The signature scheme S ′ is secure if S is secure and H is
collision resistant [150]. Actually, it can also be secure when S is not secure
in the sense of Definition 2.14 but H is modeled as a random oracle, an ar-
gument that justifies constructions like RSA, Paillier or Rabin full-domain
signatures [228, 200, 222, 33] and DSS [12].

Fiat and Shamir have shown how to transform any three-round identi-
fication scheme into a signature scheme secure in the random oracle model
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[100]. Roughly, in a three-round identification scheme a prover uses his secret
key to prove his identity to a verifier as follows: the prover sends a message
CMT called commitment to the verifier, the verifier returns a random string
CH called challenge, and the prover provides a response RSP . The verifier
applies a verification algorithm to the prover’s public key and the conversa-
tion CMT ||CH||RSP to decide whether or not he believes his interlocutor is
the person he claims to be. The security of an identification scheme requires
that the verifier always believes an honest prover and would believe a cheater
only with a negligible probability.

The Fiat-Shamir transform produces a signature scheme in which the
random challenge is replaced by a hash computation of the commitment. To
sign a message m using a public hash function H = (Gen,H) (with fixed
key s), the signer generates a commitment CMT as the prover would, he
computes CH = H(s, CMT ||m), he computes a response RSP to CH as the
prover would and returns the signature CMT ||RSP . The verifier computes
CH = H(s, CMT ||m) and would accept the signature if the verifier of the
identification had accepted the conversation CMT ||CH||RSP . For further
details and formalism, we refer to [100, 198].

The Fiat-Shamir transform produces secure signature schemes in the ran-
dom oracle model if the identification scheme is secure against passive at-
tacks (that are attacks in which the adversary may read all the messages
but not modify any of them) and the commitments are drawn at random
from a large space [17]. Most notably, Schnorr [237] and GQ [124] signa-
tures are constructed that way. The Fiat-Shamir transform also produces
forward-secure signature schemes (schemes for which the security of previous
signatures remains intact if the secret key leaks today) from forward-secure
identification schemes [17].

2.6.3 Other applications

Hash functions are used to guaranty the integrity of documents via mes-
sage authentication codes and digital signatures, but they have many other
applications; we present some of them in this section.

Commitment schemes. Commitment schemes allow a user to commit on
a bit value b (the commitment) that is hidden, and to reveal this bit later. It
is the equivalent of a sealed box sent without key: its content is hidden until
the sender send the key to the receiver. Commitment schemes are required
to be both hiding and bidding: no receiver can guess the commitment but
with a probability negligibly larger than 1/2, and no sender can produce a
commitment valid for both values of the bit.
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Commitment schemes have been first introduced by Brassard et al. [56];
they have applications for electronic coin flipping [48], zero-knowledge proofs
of knowledge [118] and in verifiable secret sharing. Commitment schemes
can be constructed from pseudorandom number generators [191] and from
one-way functions [126], hence from CRHF.

In the random oracle model, a trivial construction of a commitment
scheme would be to send as commitment the hash of a random even value to
commit to 0 and the hash of a random odd value to commit to 1. This solu-
tion is not secure for a CRHF because nothing in the definition of a CRHF
prevents the last bit of the message from leaking. The scheme would however
be secure with a perfectly one-way probabilistic hash function [61]. In [127],
a practical solution is proposed that uses CRHF and a particular instance of
universal hash functions.

Pseudo-random number generation. Pseudorandom number genera-
tors (PRNG) receive as input a seed or small truly random bit sequence
r, and output a larger bit sequence that can be distinguished from a truly
random bit sequence by no PPT algorithm but with negligible probability.
Assuming the hash function H = (Gen,H) behaves “sufficiently randomly”
(in particular, if it behaves like a random oracle), the following constructions
are good PRNGs

Gcounter(r) := H(s, r)||H(s, r + 1)||H(s, r + 2)||...
Gserie(r) := H(s, r)||H(s,H(s, r))||H(s,H(s,H(s, r)))||...

where for seeds of size µ, the symbol + represents addition modulo 2µ. Other
constructions are also possible [8].

One important application of these generators are key derivation tech-
niques. Secret keys are very important to guarantee the security of crypto-
graphic protocols. Using one single secret key in many protocols would be a
dangerous practice: using this key in unappropriate ways or in an insecure
protocol only once would be enough to reveal it, therefore threatening the
security of all the other protocols that use the same key. For this reason, the
private keys used in protocols are usually derived from a “master” private
key, using for example a hash function in counter mode as above [8]. Be-
cause the hash computation cannot be reversed and its output is “perfectly
random”, the leakage of one particular secret does not disclose any partial
information on the master key.

Entropy extraction. Many applications in cryptography require good
long secret pseudorandom bit sequences of one hundred or one thousand
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bits but no human being can remember such a long sequence of bits. On
the other hand, a human can remember one thousand bits of information if
this information is structured like a passphrase but passphrases have a low
entropy that makes them unsuitable for many applications. In this context,
universal hash functions can be used to transform long passphrases into short
bitstrings with maximal entropy. Similarly and even more importantly, at
the end of a key agreement protocol like Diffie-Hellman [90], a hash function
is used to transform a mathematical object with a good entropy (typically
an element of a large group) into a bitstring that will serve as an AES key.

Formally, let D be a probability distribution on a set S. The Renyi
entropy of D is the probability that x = y when x and y are drawn indepen-
dently and according to distribution D:

Hren(D) = − log Pr
x,y
D←S

[x = y].

If D1 and D2 are probability distributions on a same set S, the statistical
distance between them is

L1(D1,D2) =
∑
x∈S

|PrD1 [x]− PrD2 [x]|
2

.

The so-called “left-over hash lemma” shows that universal hash functions can
be used to “smooth” probability distributions to the uniform distribution.
This lemma has various versions with the same intuitive meaning; we adapt
the version of [128] to our notations.

Lemma 2.1 (Left-over Hash lemma) Let Dn be a probability distribution
on {0, 1}n that has a Renyi entropy at least r(n). Let H : {0, 1}κ(n) ×
{0, 1}µ(n) → {0, 1}λ(n) be a strongly universal hash function. Let e(n) :=
(r(n)−λ(n))/2, let Uλ(n) be the uniform distribution on the set {0, 1}λ(n) and
let DnH be the distribution of the output of H when its key is chosen uniformly
in {0, 1}κ(n) and its message is chosen according to distribution Dn. Then
L1(Uλ(n),DnH) ≤ 2−(e(n)+1).

In practice, a standardized hash functions like SHA will be used in this
application.

Password checking. Hash functions are used in server-client applications
where the clients identify to their server with a password. To be able to verify
the passwords, the server must have somehow stored them in a database but
this introduces serious security threats: a legitimate employee or a hacker
who would enter this database could read all the passwords and later use
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them. A classical solution to this problem is to store a hash value of each
password instead of the passwords themselves: in the authentication phase,
the server re-computes this hash value from the password introduced, and
compares it to the value in its database. Intuitively, the previous attack is
avoided if the hash function is preimage resistant.

2.7 Further readings

Hash functions are a fundamental tool in cryptography, discussed in all cryp-
tography textbooks (among which [114, 150, 176, 235]) and in three sur-
veys [31, 214, 187]. No survey has appeared recently, but Bart Preneel is
writing a book entirely dedicated to the topic that should appear in 2009. The
most important publications on hash functions are [83, 65, 212, 61, 63, 232].

The security definitions of hash functions differ from one application to
the other. We have given in Section 2.2 the main notions of preimage, second-
preimage and collision resistance, and in Section 2.3 the notions of universal
hash function, of pseudorandom function and of random oracles. The no-
tion of non-malleability will be further discussed in Chapter 8 of this thesis;
references for other security notions are given in the appendix A of [232].
Trapdoor hash functions [156, 244, 211] will be introduced in Section 3.1.1.

The Merkle-Damg̊ard transform presented in Section 2.4 is used in most
“custom designed” hash functions like the MD+ and SHA families. It is be-
yond the scope of this thesis to discuss these functions and the large number
of new algorithms that have recently been proposed for the NIST competi-
tion [1]. We refer to the ECRYPT “SHA-3 Zoo page”, the “Hash Function
Lounge” of Paulo Barreto and the bibliography maintained by Søren Steffen
Thomsen [16, 2, 3] for pointers to the specifications of these algorithms and
up-to-date information on their security.



Chapter 3

The reductionist approach to
cryptographic hash functions

Collision resistance is the most important security property for hash func-
tions. The notion is intuitive, it is a necessary requirement for many applica-
tions and it also implies preimage resistance and second preimage resistance.

Collision resistant hash functions can be constructed under widely be-
lieved number theoretic assumptions like the discrete logarithm and the fac-
torization assumptions, but these constructions only give fixed-length hash
functions and the corresponding hash algorithms have traditionally been very
slow. Indeed, until recently cryptographic hash functions could be divided
into number theory-based inefficient hash functions and heuristic, specially
designed, efficient hash functions.

Throughout this thesis, a provable hash function is a hash function whose
collision resistance is implied by a hardness assumption on a (known) math-
ematical problem. In particular, the word “provable” does not refer to any
additional property of hash functions like universality or pseudorandomness.
The theory of cryptography has provided provably secure constructions for
pseudorandom functions but these constructions are still far less efficient
than provably collision-resistant hash functions. The functions described in
this chapter have only been designed to be provably collision resistant; they
often satisfy extra properties of universality but most of them are not good
candidates of pseudorandom functions.

Provable hash functions usually have a rich mathematical structure that
implies homomorphic properties and weak behaviors on particular inputs.
These properties do not contradict collision resistance but prevent the hash
functions from being used in applications requiring more properties. In Chap-
ter 9, we will show how to modify the Zémor-Tillich hash function to heuris-
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tically satisfy good pseudorandom properties while preserving its provable
collision resistance.

Collision resistance is of course only guaranteed if the underlying math-
ematical problem is really difficult. As discussed in Chapter 2, a problem is
hard if no probabilistic polynomial-time algorithm can solve it. For instance,
it is widely believed that the factorization problem, the discrete logarithm
problem and the elliptic curve discrete logarithm problem are hard. The
first provable cryptographic hash functions were collision resistant under a
hardness assumption on one of these problems but they were very inefficient
compared to specially designed hash functions.

The new generation of provable hash functions are much faster but their
collision resistance relies on less standard assumptions. To be meaningful, a
hardness assumption must have been carefully examined by the designers of
the hash function who must provide some “evidence” of its validity. Ideally,
the assumption should have been studied before in other contexts which
can be referred to as “evidence” of hardness; the underlying mathematical
problem should have a clear and concise form that facilitates its examination
by mathematicians even outside the cryptographic community.

This chapter reviews some provable hash functions. Section 3.1 gives
some early proposals; Sections 3.2 and 3.3 detail VSH and SWIFFT; Sec-
tion 3.4 and 3.5 give the main results on block cipher-based hash functions
and expander hash functions.

Among the “provable” hash functions that are reasonably efficient, VSH
is certainly the function whose security is the most convincing: a collision
algorithm on VSH would probably imply significant improvements on current
factorization algorithms. The collision resistance of SWIFFT reduces to a
particular class of a lattice problem whose general formulation is NP-hard.
The security of block cipher-based hash functions is proved under some ide-
alization of the underlying block cipher. Finally, the security of expander
hashes depends on each particular instance: while LPS and Morgenstern
hashes are now completely broken, the Zémor-Tillich hash function has not
been seriously damaged since 1994.

“Provable security” with respect to non-standard assumptions may not
give today the same confidence as a security reduction to the factorization
problem, but the confidence grows over the years if the underlying prob-
lems are studied and the function does not get broken. In custom designed
hash functions, security flaws may be well-hidden and missed by the first
design evaluations and only appear after validation. The security reduction,
however, provides a concise well-defined mathematical problem to solve in
order to break the function; the failures of cryptanalysts over the years bring
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significant evidence for the hardness of the problem.

3.1 Early instances of CRHF

The first constructions of collision resistant hash functions rely on the fac-
torization problem, the discrete logarithm problem or on certain classes of
knapsack problems. Many constructions use the Merkle-Damg̊ard transform
(see Section 2.4 of Chapter 2) or any other transform to extend a fixed-
length hash function into an arbitrary length hash function. Alternatively,
some factorization and discrete logarithm-based hash functions use claw-free
functions recursively.

3.1.1 Factorization-based hash functions

The integer factorization problem is the following:

Problem 3.1 (Integer Factorization Problem or IFP) Given n = pq
for two randomly chosen primes p and q of the same size, find the prime
factors p and q.

The factorization problem has been studied for ages, probably more than
4000 years. The best algorithms today are index-calculus and sieving algo-
rithms; they both run in subexponential time, which is better than trivial
exhaustive searches but still far from PPT . The factorization problem is be-
lieved to be infeasible today for composite n of at least 1350 bits [112].

Collision resistant hash functions exist if the factorization problem is hard.
The construction of Goldwasser et al. [120, 121] uses a claw-free function in
a recursive way.

Definition 3.1 A k-claw-free function is a pair of PPT algorithms (Gen,H)
such that

• Polynomial-time indexing: Gen(1n) returns (f0, f1, ..., fk) where
the fi are the descriptions of permutations on a same domain D that
are chosen uniformly randomly in the set of all permutations of domain
D (we suppose that the description of D is implicitly contained in the
description of the permutations) ;

• Polynomial-time evaluation: H receives the description of a per-
mutation fi and an element m of its domain, and returns fi(m);
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• Claw-freeness: for all (f0, f1, ..., fk) generated by Gen, no PPT algo-
rithm can create a claw that are two values s, s′ such that there exist
i 6= i′ with fi(s) = fi′(s

′).

If factoring is hard for integers n = pq with primes p ≡ 3 mod 8 and
q ≡ 7 mod 8, then the choice f0(s) = s2 mod n, f1(s) = 4s2 mod n and D
the set of quadratic residues modulo n, leads to a 2-claw-free function [120].
Indeed, if f0(s) = f1(s′) then with a probability 1/2 either gcd(s+ 2s′, n) or
gcd(s − 2s′, n) is p or q. The computation of a hash value requires roughly
one modular squaring per bit of message.

The construction of Goldwasser et al. uses a 2-claw-free function as de-
scribed in the following theorem and represented in Figure 3.1.

Theorem 3.1 Let P = (GenP , HP) be a 2-claw-free function. Then the hash
function H = (GenH, HH) is a collision resistant hash function, where GenH
and HH are defined as follows:

• GenH: on input 1n, runs GenP(1n) to get (f0, f1); then selects uni-
formly randomly an element s in the domain and returns (s, f0, f1).

• HH: on input (s, f0, f1) and m; uses a prefix-free encoding1 to encode
m in binary and gets a bit sequence m0m1...mN ; then returns

fmN (fmN−1
(...fm0(s)...)).

Damg̊ard has given two variants of Goldwasser et al.’s scheme that are also
based on factorization assumptions [82]. The first variant uses moduli n =
p1...pk with more prime factors and the permutations fi(s) = (ais)

2 mod n
for arbitrary ai ∈ Z∗n and quadratic residues s. The computation of a hash
value requires only one modular squaring for log2 k bits of message but the
modulus n must be larger to guarantee the same security level.

The second variant defines fi(s) = ais
2 mod n where the ai are randomly

chosen quadratic residues modulo n. The modulus n may be kept as before
and log2 k bits are processed at once but the security of this scheme is slightly
different from the previous ones: the resulting hash function is collision re-
sistant if no algorithm can compute a square root modulo n of one of the
values aia

−1
i′ for i 6= i′. In this scheme unlike in the previous ones, it is crucial

1A prefix-free encoding is an encoding such that for all valid encoding m = m1m2...mN ,
no valid encoding can be formed by appending symbols at the end of m. One prefix-free
binary encoding is the following: code 1 by 11, 0 by 00, and terminates all other encodings
with 01.
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Figure 3.1: The Goldwasser et al.’s construction on pre-encoded messages

to randomly choose the ai as some choices like a2 = 4a1 lead to an insecure
function.

Another scheme secure if factorizing is hard has been given by Shamir and
Tauman [244]. In this scheme, the message is put on the exponent rather
than on the basis: for a large composite number n = pq and a generator g of
Z∗n, the hash value of a message m is defined as gm mod n. The computation
of a hash value requires one and a half modular multiplication per bit of
message. The scheme is collision resistant as for any collision (m,m′), the
value m−m′ must be a multiple of ϕ(n) = (p−1)(q−1) = n−p−q+1 hence
reveal the factorization because p and q are roots of X2−(n+1−ϕ(n))X+n.

All these hash functions based on factorization are trapdoor hash func-
tions [156], in the sense that collisions can actually be computed efficiently
but only with the help of some information called a trapdoor (here the trap-
door is the factorization).

At first sight, the existence of a trapdoor is a weakness, but its security
damage is limited and can be easily removed. If a factorization-based trap-
door hash function is used in a signature algorithm, the person who chooses
the modulus n should not be allowed to use it because he is actually able to
produce two colliding messages m,m′, to sign m and then pretend he signed
m′. Although such a collision would immediately cast suspicion on the signer
because it would almost surely reveal the factorization of n, it is best pre-
venting the attack by letting the modulus be generated by a trusted party
or by a group of users using some secure multiparty computation [52].

To conclude this discussion on trapdoors, we point out that trapdoor hash
functions and randomized trapdoor hash functions are an interesting tool in
themselves, allowing efficiency and security improvements on many signature
problems [156, 244, 211, 143].
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3.1.2 Discrete logarithm-based hash functions

The discrete logarithm problem in a group G is the following:

Problem 3.2 (Discrete Logarithm Problem in a cyclic group G or DLP)
Given a generator g of G and a uniformly randomly chosen element h of G,
find an integer e such that h = ge. (We will write e = logg h.)

Generic methods solving the discrete logarithm problem (BSGS, Pollard,
Pohlig-Hellman) run in exponential time. The hardness of DLP highly de-
pends on the group G but not on the choice of the generator; it is believed
to be hard in the multiplicative group of finite fields of large characteristic p
with p − 1 = 2q and q prime, in large extension fields of F2, and in elliptic
curve and some hyperelliptic curve Jacobian groups.

Although the hardness of the factorization problem and the discrete log-
arithm problem in finite fields cannot be strictly related, the same ideas lead
to similar algorithms to solve both problems. In particular, the best discrete
logarithms algorithms for finite fields today are index-calculus algorithms
and number and functional field sieves that all have a subexponential com-
plexity. Computing discrete logarithms in prime fields is usually considered
a slightly harder problem than factoring [197]. Today, primes p of 1350 bits
and binary fields with n about 2700 are considered to be safe [112].

In the case of elliptic curve discrete logarithm, no improvement on generic
methods is known in general so elliptic curves defined over prime fields of 145
bits are considered to be safe. Discrete logarithms for integer multiplication
modulo composite numbers n = pq where the factorization is not given to
the solver algorithm is at least as hard as the corresponding factorization
problem.

The discrete logarithm problem may be generalized to the representation
problem [54], which is hard in an cyclic group if and only if the corresponding
DLP is hard.

Problem 3.3 (Representation Problem in a cyclic group G.) Given k
random elements gi of a cyclic group G and the order q of the group, find
a representation of identity, that is a tuple (e1, ...ek) ∈ (Z/qZ)k \ {(0, ...0)}
such that

k∏
i=1

geii = 1.

Theorem 3.2 In cyclic groups, the representation problem is hard if and
only if the DLP is hard.
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Proof:

⇒ Suppose there exists a PPT algorithm A solving the discrete logarithm
problem. We construct an algorithm B as follows: on input k elements
gi, B first picks a generator g of G and uses A k times to get integers
di such that gi = gdi , then B solves the linear diophantine equation∑
eidi = 0 mod q. Algorithm B then returns the tuple (e1...ek) is a

solution to the representation problem.

⇐ Suppose there exists a PPT algorithm A solving the representation prob-
lem. We construct an algorithm B as follows: on input g and h,
B picks k − 1 random values di and uses A on inputs h and gdi for
each i. If (eh, e1, ...ek−1) is the solution given by A, then B returns
e = −e−1

h

∑
diei mod q which satisfies ge = h.

�

Damg̊ard [82] has given a variant of Goldwasser et al.’s construction [120,
121] which leads to a claw-free function for groups G in which the discrete
logarithm problem is hard. A generator g and a set of elements ai ∈ G are
chosen, then each permutation fi is defined as fi(x) = aig

x. This variant is
very inefficient as a hash computation requires one modular exponentiation
per bit of message. The security argument for this construction is that any
claw fi(x) = fi′(x

′) would reveal the discrete logarithm of aia
−1
i′ in base g.

Chaum et al. [71] have proposed a fixed-length hash function secure if the
DLP is hard in the group F∗p where p and q := (p − 1)/2 are large primes.
The function is parameterized by k random elements gi ∈ F∗p of order q.
The message is first encoded into an element (m1, ...mk) of Zn

q then the hash

value
∏k

i=1 g
mi
i mod p is returned. The computation requires roughly 1.5

modular multiplication per message bit. The security argument is as follows:
finding collisions is clearly as hard as solving the representation problem in
the subgroup of index 2 of F∗p, which as we saw is as hard as DLP in that
group.

3.1.3 Knapsack-based hash functions

Another important class of problems in cryptography are knapsack problems.
The name “knapsack” comes from the following analogy: a trekker wants to
fill his knapsack with the first rate of essentials according to their respec-
tive importance (values) and weights (costs). A natural question arising is
whether a certain level of necessity can be reached at a given weight.
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Problem 3.4 (Knapsack Problem) Given n values v1, v2, ..., vn and n weights
w1, w2, ..., wn, a desired value V and a maximal weight W , decide whether
there exists a subset I ⊂ {1, 2, ..., n} such that

∑
i∈I vi ≥ V and

∑
i∈I wi ≤

W .

The knapsack problem is NP-complete, that is it belongs to the Com-
plexity Theory class NP (the class of decisional problems with a PPT proof
when the answer is “yes”) and it is NP-hard, which means that if it could
be solved in the worst case by a PPT algorithm then so could any problem
in the class NP. It is currently unknown whether NP-complete problems can
be solved in polynomial time, a question known as the P = NP problem.
However, as long as no evidence exists that P = NP , NP-complete problems
may be considered very hard to solve at least in the worst case.

The standard formulation of the knapsack problem is decisional. Its com-
putational version, namely computing the set I if it exists, is also NP-hard.
Indeed, given an algorithm A that solves the decisional version, we may
construct an algorithm B that solves the computational problem as follows.
Algorithm B first forwards its input to A and receives an answer “no” or
“yes”. If A returns “no” B is done, otherwise it executes A again after re-
moving n from I, that is on the n− 1 values v1, v2, ..., vn−1, the n− 1 weights
w1, w2, ..., wn−1, the desired value V and the maximal weight W . If A re-
turns “no” then n belongs to I so B set n back to I and tries removing n−1,
otherwise it just tries removing n− 1. Following this way B will finally solve
the computational version in at most n calls to the decisional solver.

When the values and the weights are equal the problem is called subset
sum problem; it is also NP-complete. In cryptography, a special case of the
computational subset sum problem is considered.

Problem 3.5 Given a set of n `-bit integers {a1, a2, ...an} where ` is a poly-
nomial function of n, and a `′-bit integer S where `′ ≈ ` + log2 n, find a
vector x of components xi equal to 0 or 1 such that

∑
aixi = S.

Equivalently, we may replace
∑

i aixi = S by
∑

i aixi = S mod 2n in this
problem: any PPT algorithm able to solve one equation can be used to solve
the other equation.

Knapsack-based cryptosystems lead to very efficient and parallelizable
schemes but their security is questionable despite of the NP-completeness of
the knapsack problem. For cryptography, NP-hardness is irrelevant in two
senses. First, the property is asymptotic, and knapsack problems might very
well be easy for parameters of practical sizes and become difficult only for
very large parameters. Second, the property is worst-case, meaning that NP-
complete problems may be hard only for some very specific parameters and
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easy in average, while hardness on average would be required for cryptogra-
phy.

The hardness of Problem 3.5 highly depends on how the parameters n
and ` relate. For `(n) > n2 and `(n) = O(log n) the problem is easy in
average [157, 57]. For large n, Wagner’s generalized birthday attack [263]
can be used. For ` = n there is no algorithm running faster than in time
O(2n/2). When ` > 1.0629n, the knapsack problem reduces to the problem
of finding the shortest vector in a lattice (SVP, or Shortest Vector Problem)
[80, 146] that is to find arg minv∈L ||v|| for a lattice L = {

∑n
i=1 xivi|xi ∈ Z}

defined by a set of vectors vi ∈ Zn.
The connection between knapsack and lattice problems can be intuited as

follows: let W be a large integer. If there exist x1, ..., xn ∈ {0, 1} satisfying∑
aixi = S then the vector v = (x1, ...xn, 0) is an integer linear combination

of the vectors

v1 = (1, 0, 0, ..., 0, a1W )

v2 = (0, 1, 0, ..., 0, a2W )

v3 = (0, 0, 1, ..., 0, a3W )

...

vn = (0, 0, 0, ..., 1, anW )

vn+1 = (0, 0, 0, ..., 0,−SW )

and it has a small norm. For W ≥
√
n, it can be proved that the short-

est vector of the lattice generated by v1, ..., vn+1 provides a solution to the
knapsack.

In norm 2, it is NP-hard to find even an approximation of a lattice shortest
vector up to a constant factor [181]. The best PPT algorithms for this problem
are variants of the LLL algorithm [165, 236]; they provide approximations up
to an exponential factor in n and are practical only if n < 100 [238, 239, 225].

The first knapsack utilization in cryptography is the Merkle-Hellman en-
cryption scheme [179]. In this system, an easy instance of the knapsack
problem is generated (if the ai above are such that

∑
j<i aj < ai for all i

then the knapsack problem is very easy) then “hidden” by a secret permu-
tation and a modular multiplication by a secret constant. The system has
been cryptanalyzed by Shamir [241] who showed how to recover the secret
constant and the permutation. Later, variants of Merkle-Hellman have also
been broken by extending Shamir’s ideas and by low-density attacks for sys-
tems with large coefficients ai [157]. Both approaches make use of lattice
reduction techniques such as the LLL algorithm and improvements upon it.
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Designing a hash function based on the knapsack problem seems an easier
problem than designing an encryption scheme [83]. Encryption schemes have
been based on weak instances of the knapsack problem to allow decryption;
their security relies entirely on the way the easy instance is disguised into
a generic one and no secure approach has been designed so far. For hash
functions, there is no need for a decryption algorithm so the security may
rely directly on the hardness of the knapsack problem.

The most notable example is Damg̊ard compression function [83]. In this
function n = 256 random numbers ai of ` = 120 bits are chosen and each
message m = m1||...||mn is compressed to the value

f(a1||...||an,m) =
n∑
i=1

miai

where the addition is modulo 2n. A preimage on Damg̊ard compression func-
tion can be computed in time O(232) [60] but it only gives pseudo-preimages
for the full hash function; another attack due to Schroeppel and Shamir com-
putes preimages in time 264 [212]. The construction was first proposed by
Impagliazzo and Naor [138] who showed that the function

g(a1||...||an,m) = a1||...||an||f(a1||...||an,m)

is one-way and a PRNG if the subset sum problem is hard on average.

The security of Damg̊ard and Impagliazzo-Naor constructions relies on a
new average hardness assumption that actually does not benefit at all from
the NP-completeness of the subset sum problem. A significant improvement
to knapsack-based hash functions has been given by Ajtai [19] who showed
that random instances of some lattice problems are as hard as the hardest
instances of some other problems. Ajtai’s work and subsequent improvements
[115, 58, 183, 185, 184, 202, 201, 172] have had a major influence on the
SWIFFT hash function described in Section 3.3.

3.2 The Very Smooth Hash (VSH)

Hash functions based on discrete logarithm and factorization problems have
been orders of magnitude slower than custom design hash functions until
Contini et al. proposed VSH [76]. The function is 25 slower than SHA-1
and is collision resistant under a new assumption that is strongly related to
factoring; a variant related to discrete logarithms is also proposed.

This section follows the main lines of [76]; we refer to the original paper
for omitted details.



3.2. THE VERY SMOOTH HASH (VSH) 53

3.2.1 The VSSR assumption

An integer b is said to be B-smooth if all its prime factors are smaller than
B; it is called very smooth when B is a polylogarithmic function of n, B =
(log n)c for some constant c. The ith prime is noted pi, that is p1 = 2, p2 =
3, ... and additionally p0 = −1. An integer x is called a trivial modular square
root of an integer b if b is a perfect square and b = x2. Roughly speaking, the
VSSR hardness assumption is that it is hard to find a non-trivial modular
square root of a very smooth number.

Problem 3.6 (Very Smooth number nontrivial modular Square Root
or VSSR) Given n a product of two randomly chosen primes of about the
same size, find x ∈ Z∗n such that x2 =

∏µ
i=1 p

ei
i mod n for µ ≤ (log n)c and

at least one of e0, ...eµ is odd.

Finding very smooth relations like x2 =
∏µ

i=1 p
ei
i mod n is a key step in all

factorization algorithms because such relations can be combined with linear
algebra to produce a pair (x, y) such that x2 ≡ y2 mod n, which reveals a
factor of n when x 6≡ ±y mod n, that is with a probability 1/2. As many
smooth relations are necessary for the factorization algorithms, the size of
the modulus necessary to expect the hardness of VVSR is a bit larger than
the size needed for the hardness of factoring [76].

3.2.2 The Very Smooth Hash algorithm

In VSH, the key generation algorithm Gen produces a random RSA-modulus
n = pq where p and q are primes of the same size. The hashing algorithm im-
plicitly follows the structure of Merkle-Damg̊ard. The message block length
µ is defined as the largest integer such that

∏µ
i=1 pi ≤ n. For a key s = n and

a message m = m0...mL−1 of L < 2µ bits, VSH algorithm runs as follows:

1. Let x0 = 1.

2. Let N = dL/µe the number of blocks. Pad the last block as mi = 0 for
N < i ≤ Nµ.

3. Encode the message length L =
∑µ

i=0 Li2
i in the block N + 1.

4. For j = 0, 1, ..., N compute xj+1 = x2
j

∏µ
i=1 p

mjµ+i

i mod n.

5. Return xN+1.
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The compression function implicitly used in VSH is

f(s, x||m) = x2

µ∏
i=1

pmii mod n.

Although this compression function is not itself collision resistant, it satis-
fies weaker properties that suffices for the security of the Merkle-Damg̊ard
transform [76].

Theorem 3.3 [76] Finding a collision in VSH is as hard as solving VSSR.

Proof: The proof of [76] shows that two different colliding messages m and
m′ lead to a solution of VSSR. Let xj, x

′
j be the outputs of the successive

applications of the compression function, L,L′, N,N ′ be the lengths and
number of blocks for m and m′, and m[j],m′[j] be the jth blocks of m and
m′.

First consider the case L = L′. Let t ≤ N be the largest index such that
(xt,m[t]) = (x′t,m

′[t]) but (xj,m[j]) 6= (x′j,m
′[j]) for t < j ≤ N + 1. Then

(xt)
2

µ∏
i=1

p
mtµ+i

i ≡ (x′t)
2

µ∏
i=1

p
m′tµ+i

i mod n.

Let ∆ = {i : mtµ+i 6= m′tµ+i, 1 ≤ i ≤ µ} and ∆10 = {i ∈ {1, ..., µ} : mtµ+i =
1 and m′tµ+i = 0}. We have[

(xt/x
′
t)
∏
i∈∆10

pi

]2

≡
∏
i∈∆

pi mod n.

If δ 6= ∅ this equation solves VSSR, otherwise (xt)
2 = (x′t)

2 mod n. If x′t 6≡
±xt mod n then VSSR can be solved by factoring n, otherwise x′t = −xt mod
n by definition of t hence (xt−1/x

′
t−1)2 is congruent to −1 times a very smooth

number.
In the case L 6= L′, the equality xN+1 = x′N+1 implies (xN/x

′
N)2 ≡∏µ

i=1 p
L′i−Li
i mod n. Since |L′i − Li| = 1 for at least one i, VSSR is solved as

before. �

VSH is inspired by previous factorization and discrete logarithm-based
hash functions like Shamir’s and Chaum’s ones [244, 71]. The value calcu-
lated here is

∏µ
i=1 p

ei
i mod n where ei =

∑N
j=0 mjµ+i2

N−j; Shamir’s function
computes gm mod n for a randomly chosen g; Chaum uses many randomly
chosen basis elements gi but computes the multiexponentiation modulo a
prime. The main contribution in VSH is the use of very small basis ele-
ments that increases the efficiency and preserves a very convincing security
argument.
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3.2.3 Cube-VSH, Fast-VSH and VSH-DL

Contini et al. [76] have given various variants of VSH with similar properties.

In the first variant, the squaring of the compression function is replaced
by a cubing, that is f(s, x||m) = x3

∏µ
i=1 p

mi
i mod n. The new function is

collision resistant assuming the hardness of computing a modular cube root of
a very smooth cube-free integer of the form

∏µ
i=1 p

ei
i 6= 1 where ei ∈ {0, 1, 2}

for all i, a problem related to RSA-inversion and conjectured to be hard [76].
In the second variant called Fast VSH, the primes pi are replaced by small

products of small primes. A larger modulus must be used but the security
proof keeps unchanged and the resulting function is faster than VSH. For this
variant, Saarinen [234] has shown that the hash value of a message leaks one
bit of information on the message, more precisely it gives a linear equation
satisfied by the bits of the messages.

In the third variant called VSH-DL, the composite modulus n is replaced
by a prime p, leading to Chaum’s function [71] where the random base ele-
ments are replaced by the primes pi. The function is collision resistant under
a new assumption called VSDL, Very Smooth number Discrete Log that
according to [76] is related to the discrete logarithm assumption in prime
fields.

Problem 3.7 (Very Smooth number Discrete Log Problem or VSDLP)
Given a random prime p such that q := (p− 1)/2 is also prime, find integers
e1, ...eµ such that 2e1 ≡

∏µ
i=2 p

ei
i mod p with |ei| < q for i = 1, 2, ..., µ and at

least one of e1, e2, ...eµ is non-zero.

3.2.4 Pros and contras of VSH

Besides its proof of collision resistance, VSH turns out to be pretty efficient,
requiring only one modular multiplication per O(log n) bits. Fast VSH is
about 25 times slower than SHA-1 [76]. VSH can be used as a randomized
trapdoor hash function, improving the efficiency of the verification algorithm
of the Cramer-Shoup signature scheme [81] by 50% without loss of security.
However, as pointed out by Saarinen [234] and the authors of VSH them-
selves, the function has some undesirable properties making it unsuitable as a
general purpose hash function. The factorization of n constitutes a trapdoor,
the hash can be inverted on small messages, it suffers from some malleability
properties and truncated versions are not collision resistant.

The most apparent weakness is the trapdoor: given the factorization of
n, collisions can be created by choosing m,m′ such that the corresponding
ei, e

′
i satisfy ei − e′i = 0 mod ϕ(n). Advantages and drawbacks of trapdoors
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are discussed at the end of Section 3.1.1. In practice, if VSH is used with
RSA signatures, it is advisable to choose two distinct moduli for the hash
and the signature.

The VSH algorithm achieves mixing through reductions modulo n; for
short messages (typically messages of length smaller than half of the block
length) these reductions do not occur and the function becomes invertible.
The attack works as follows: make a guess on the length, divide VSH result
by the corresponding

∏µ
i=1 p

Li
i and factorize the result. Invertibility of short

messages is a concern in practice, for example in applications where pass-
words or keys are hashed. To protect against this attack, the authors of [76]
propose to square the final result a constant number of times to ensure the
appearance of reductions.

VSH suffers from malleability properties. For example, it is easy to pro-
duce two messages m,m′ for which V SH(m) = 4V SH(m′) mod n. More
generally, Saarinen [234] has pointed out that for m ∧m′ = 0...0,

V SH(0...0)V SH(m ∨m′) ≡ V SH(m)V SH(m′) mod n

where ∧ and ∨ are bitwise AND and OR. This property may introduce
security threats against adaptive adversaries if the hash function is used as
a MAC.

VSH can definitely not be used as a random oracle. However, its se-
curity proof for collision resistance is very convincing and the function is
very efficient compared to early provable hash functions. If the trapdoor is
carefully treated, it is a very good hash candidate for applications requiring
only collision resistance, but it would be very dangerous using it in other
applications.

3.3 The SWIFFT hash function

As discussed in Section 3.1.3, knapsack problems have appealed to Cryptog-
raphers because of their asymptotic hardness and because they potentially
lead to very efficient, parallelizable schemes. However, the breaking of many
knapsack-based encryption schemes and hash functions gave the knapsack
a bad reputation. These cryptanalytic results were possible despite of the
NP-hardness because hardness results from the Theory of Complexity are
only asymptotical and worst-case. Indeed, the attacks against knapsack-
based cryptographic schemes can be divided into attacks specific to partic-
ular knapsack problems used in the schemes, and general attacks successful
for the parameter sizes proposed but asymptotically inefficient.
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Knapsack problems have regained interest since Ajtai’s hardness reduc-
tion of lattice problems from average case to worst case [19, 58]. Ajtai’s result
leads to the following function that is one-way if the shortest vector prob-
lem is hard to approximate in the worst case. The key generation algorithm
produces n1, n2, q ∈ N such that n1 log q < n2 ≤ q

2n4
1

and q = O(nc1) for some

constant c > 0, and a random matrix M ∈ Zn1×n2
q . The hashing algorithm,

on inputs a key (n1, n2, q,M) and a message m ∈ {0, 1}n2 , returns the hash
value H(M,m) = Mm mod q. The function has later been shown to be also
collision resistant [115].

To improve the efficiency of Ajtai’s function and to reduce the key size,
Micciancio proposed to use special knapsack problems corresponding to cyclic
lattices [182] that are lattices such that (x1, x2, ..., xn) ∈ L ⇔ (xn, x1..., xn−1) ∈
L. The efficiency is enhanced by using FFT algorithm [77] and the key size
is reduced because only one row of M is needed to define it. Although no
complexity hardness result is known on this special class of lattices, the best
algorithms solving general lattice problems do not perform better on cyclic
lattices. Moreover, the problem of finding the shortest vectors in cyclic lat-
tices can be related to long-studied problems in Algebraic Number Theory
[201, 173].

Micciancio’s one-way function has been slightly modified by Lyubashevsky
and Micciancio [170] and Peikert and Rosen [201] to lead to a collision re-
sistant hash function under the assumption that the shortest vector problem
on cyclic lattices is hard to solve even approximately up to a linear factor.
Building on this previous works, Lyubashevsky et al. [172, 173] proposed
to use a particular set of parameters specially adapted to current processor
architectures. The resulting function called SWIFFT reaches throughputs
comparable to those of SHA-256. It is used as a building block in the NIST’s
submission SWIFFTX [1].

3.3.1 The SWIFFT algorithm

The key generation algorithm Gen of SWIFFT generates n1, n2, p where n1

is a positive power of 2, n2 is a positive integer and p is a prime satisfying
p = 2tn1 + 1 for some positive integer t. It also generates a random matrix
A ∈ {0, 1}n1×n2 and it outputs n1, n2, p, A. The particular values n1 = 64,
n2 = 16 and p = 257 are suggested in [173] as large enough for security and
particularly suited for software implementations.

The SWIFFT algorithm is a fixed-length hash function, mapping a binary
matrix x of size n1 × n2 = 64× 16 bits to an output in the range Zn1

p which
has size pn1 = 25764 ≈ 2512. The function is collision resistant assuming the
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worst-case hardness of a class of subset sum problems that corresponds to
cyclic lattices.

For a key A ∈ {0, 1}n1×n2 and a message m ∈ {0, 1}n1×n2 , let a1, ...an2

and m1, ...mn2 be the columns of A and m seen as elements in the ring
R = Zp[X]/(Xn1 + 1), that is, a column ai = (ai1, ..., ai,n1)

t is seen as the
element

∑n1−1
i=0 ai+1X

i ∈ R. The output of SWIFFT algorithm is

mFFT−1

(
n2∑
i=1

aimi

)
where mFFT−1 is a bijection corresponding to the inverse of the modular
FFT and all computations are done over R, that is modulo p and Xn1 + 1.

For a vector x = (x1, ..., xn1)
T ∈ Zn1

p , the modular Fourier transform of x
is the bijection defined as y1

y2
y3
...
yn1

 =


1 1 1 ... 1
1 ω ω2 ... ωn1−1

1 ω2 ω4 ... ω2(n1−1)

...
...

...
...

1 ωn1−1 ω2(n1−1) ... ω(n1−1)2


 x1

x2
x3

...
xn1


where ω is a 2n1th root of unity modulo t and the operations are done modulo
p. This matrix-product computation can be done in time O(n1 log n1) using
the modular FFT (mFFT) algorithm, a variant of the FFT algorithm for
finite fields.

In SWIFFT algorithm, the multiplications aimi are computed by evaluat-
ing the polynomials ai and mi on the roots of Xn1+1; as R = Zp[X]/(Xn1+1)
this can be done efficiently with the help of the mFFT algorithm [172]. The
input message m is first preprocessed by multiplying the ith row by ωi−1,
then one mFFT

(y1j, ..., yn1j) = mFFT (ω0x1j, ..., ω
n1−1xn1j)

is computed for each column j = 1, ...n2. Finally, a linear combination
involving the key elements is computed across each row i = 1, ..., n1

zi = ai1yi1 + ...+ ain2yin2 mod p.

Performing the multiplications aimi would require an additional application
of the mFFT algorithm but as mFFT is a bijection it is simply omitted
(hence the appearance of mFFT−1 in the definition above). The output is
the vector (z1, ...zn1) ∈ Zn1

p .

Lyubashevsky et al. [173] proposed further efficiency improvements spe-
cific to the choice n1 = 64, n2 = 16 and p = 257. Taking full advantage of
computer architecture and SIMD (single-instruction multiple-data) instruc-
tions, they reach throughputs comparable to SHA-256 hash function.
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3.3.2 Pros and contras of SWIFFT

The SWIFFT hash function is amazingly efficient compared to other func-
tions with “flavors of provability”. The current throughput is comparable to
SHA-256 and further improvements mapping the inherent parallelism in the
function to computer architecture are expected.

SWIFFT has good statistical properties: it is a universal hash function,
it is regular (in the sense that if the input is chosen uniformly at random
then the output is uniformly random), and it can be used for randomness
extraction (see Section 2.6.3).

SWIFFT is collision resistant under the assumption that it is hard to
find relatively short nonzero vectors in n1-dimensional cyclic lattices in the
worst case, that is for at least one cyclic lattice. The problem is NP-hard
for general lattices, and current lattice reduction algorithms seems unable to
exploit the particular structure of cyclic lattices despite of investigations mo-
tivated by related problems in Algebraic Number Theory. Although current
improvements on lattice reduction for cyclic lattice might be possible, the
security proof of collision resistance is rather convincing. We point out how-
ever that the particular choice of parameters chosen in [173] for efficiency
does not satisfy the hypothesis of Theorem 2 in [170] and hence does not
benefit from the average-case to worst-case reduction.

SWIFFT hash function has some malleability issues coming from its struc-
ture. The most apparent one is that SWIFFT is a linear function:

SWIFFT (A,m) + SWIFFT (A,m′) = SWIFFT (A,m+m′).

The property does not contradict collision nor preimage resistance but it
might be very damaging in many applications. Lyubashevsky and Micciancio
have turned this apparent weakness into a strength by building an (asymp-
totically) efficient signature scheme based on their hash function [171].

Another important issue with SWIFFT is that many of its security prop-
erties rely on the key generation process in which trapdoors can be introduced
very easily. In particular, for any two messages m and m′ it is easy to find
a key A such that m and m′ collide, as it just amounts to solving the linear
equation

∑
i ai(mi −m′i) = 0.

SWIFFT is definitely not indistinguishable from a random oracle and its
key generation process should be carefully defined to prevent trapdoor at-
tacks. However, its security proof for collision resistance is rather convincing
and it is amazingly efficient. SWIFFT has an interesting design and seems a
good hash candidate for efficiency-concerned applications that only require
collision resistance. Alternatively, SWIFFT is used as a building block with



60 CHAPTER 3. THE REDUCTIONIST APPROACH

some additional design in the SWIFFTX proposal to NIST’s call for new
hash algorithms.

3.4 Block-cipher based hash functions

Block Ciphers are a fundamental primitive in modern cryptography that is
both very efficient and well studied. As the Advanced Encryption Standard
(AES [13]) is a very trusted algorithm, it is a natural idea to construct a
hash function with a block cipher used as a black box.

This design approach was particularly meaningful at a time when no good
design of hash function was known and the DES and triple DES algorithms
were well-trusted [95]. It was abandoned after the adoption of SHA algorithm
as a standard [14], because the algorithm was much faster than existing
block cipher-based hash functions. Today, the design makes lot of sense
again because the security of SHA is being questioned [266, 265] while the
confidence in AES remains very high.

This section reviews the main results concerning block cipher-based hash
functions. We start by describing the security model of such constructions,
then we classify existing proposals in four categories as in [212], and finally
we discuss advantages and drawbacks of block cipher-based hash functions.

3.4.1 The Ideal Cipher model

The security of block cipher-based hash functions is usually analyzed in the
ideal cipher model and with respect to unbounded adversaries [178, 271,
46, 44]. The ideal cipher model has imposed in this setting because the
classical model for block ciphers, the pseudorandom permutation model, is
insufficient alone to construct collision resistant hash functions. Indeed, Si-
mon [249] has given a black-box separation between one-way functions and
collision-resistant hash functions, and one-way functions exist if and only if
pseudorandom permutations exist [226].

Let κ′, µ′ ≥ 1 be numbers. A block cipher is a function mapping a key
and a message to a ciphertext

E : {0, 1}κ′ × {0, 1}µ′ → {0, 1}µ′

where for each k ∈ {0, 1}κ′ , the function

Ek : {0, 1}µ′ → {0, 1}µ′ : m→ Ek(m) := E(k,m)

is a permutation on {0, 1}µ′ . Let E−1 be the inverse of E, that is the block
cipher such that E−1

k (Ek(m)) = m for all m ∈ {0, 1}µ′ , k ∈ {0, 1}κ′ .
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Let Block(κ′, µ′) be the set of all block ciphers E : {0, 1}κ′ × {0, 1}µ′ →
{0, 1}µ′ . A security analysis in the ideal cipher model considers any actual
block cipher like AES as a random element of Block(κ′, µ′), that is a block
cipher E such that for each key k ∈ {0, 1}κ′ a random permutation Ek has
been chosen [46].

A block cipher-based hash function is a hash function

H := Block(κ′, µ′)× {0, 1}∗ → {0, 1}λ

in which the role of the hash key is played by the block cipher itself. In
particular, a block cipher-based hash function is called collision resistant in
the ideal cipher model if it is hard to find collisions when the block cipher is
selected randomly [46].

A proof in the ideal cipher model gives good security guarantees if the
underlying block cipher presents no structural weakness. In particular, the
ideal cipher model provides a good abstraction of the AES algorithm to-
day. For block ciphers like DES with complementation or other structural
weaknesses, a proof in the ideal cipher model only gives security guarantees
against adversaries that do not exploit these structural weaknesses. The lim-
its of the ideal cipher model are very similar to the limits of the random
oracle model (see Section 2.3.4). Indeed, the two models are equivalent as
was recently shown by Coron et al. [79].

3.4.2 Main constructions

Block cipher-based hash functions follow the Merkle-Damg̊ard paradigm that
builds a hash function by iterating a compression function (see Section 2.4)

f : Block(κ′, µ′)× {0, 1}µ+λ → {0, 1}λ.

Following [212, 213], we define the rate of a block cipher-based hash func-
tion as the number of message blocks hashed per decryption or encryption
operations. We also mainly follow the presentation of [213].

Single block length hash functions

When κ′ = µ′, there exist various secure single block length hash functions
with µ = λ = µ′. Preneel et al. [216] have considered all constructions of
type

f(E, hi−1||mi) := E(xi, yi)⊕ zi
where xi, yi and zi are chosen among mi, hi−1,mi ⊕ hi−1 and a constant c.
Their conclusion, confirmed by a more rigorous analysis in the ideal cipher
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model by Black et al. [46], is that there exist 12 secure such constructions
in the sense that finding collisions and preimages require time respectively
about 2λ/2 and 2λ.

Among these 12 secure constructions, the most known are the Matyas-
Meyer-Oseas scheme [175] f(E, hi−1||mi) := E(hi−1,mi)⊕mi, the Miyaguchi-
Preneel scheme [188] f(E, hi−1||mi) := E(hi−1,mi) ⊕ mi ⊕ hi−1 and the
Davies-Meyer scheme [85] f(E, hi−1||mi) := E(mi, hi−1)⊕ hi−1.

Besides these 12 constructions, Black et al. have shown that 8 other
schemes have the same collision resistance but a reduced security as a one-
way function [46]. Further properties of the 12 basic schemes are considered
in [212].

Multiple block length hash functions

Due to the birthday paradox (Section 2.5.2), the output size of collision re-
sistant hash functions must be twice as large as the output size of most cryp-
tographic algorithms including block ciphers. Even the AES algorithm [13]
may not be used today in a single block length hash function because its out-
put has only 128 bits. For this reason, designers have attempted to construct
block cipher-based hash functions with larger output size.

No construction is known to achieve optimal collision, preimage and sec-
ond preimage resistance. The most notable constructions are MDC-2, MDC-
4 and Knudsen-Preneel code-based construction. The compression function
of MDC-2 satisfies λ = 2µ = 2κ′ = 2µ′; it is defined as

MDC-2(E, h1
i−1||h2

i−1||mi) := h1
i ||h2

i ,

where

h1
i := LT 1

i ||RT 2
i LT 1

i ||RT 1
i := E(h1

i−1,mi)⊕mi,

h2
i := LT 2

i ||RT 1
i LT 2

i ||RT 2
i := E(h2

i−1,mi)⊕mi.

The construction has appeared in [10]. Knudsen et al. [151] have recently
reported preimage and second preimage attacks with complexity 2λ/2 and a

collision attack of complexity 2λ/2
(

log2(λ/2)
λ/2

)
.

MDC-4 consists of two MDC-2 steps with a swapping in the middle; it has
a rate 1/4. We refer to [212, 153, 158] for more details and attacks beating
optimal preimage, second preimage and collision bounds. The construction
of Knudsen and Preneel [153] uses linear codes in a clever way to design
multiple block length hash functions with a “security proof” under suitable
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assumptions. However, these assumptions were partially contradicted by
Watanabe [267] who presented a differential attack working for at least some
parameters.

Using block ciphers with large keys

Some existing block ciphers including the AES have a mode satisfying κ′ > µ′,
in which case there exist efficient and secure constructions of hash functions
in the ideal cipher model.

The first and simplest scheme with rate (κ′ − µ′)/µ′ was proposed by
Merkle: [177]

f(E, hi−1||mi) := E(mi||hi−1, c)

where c is a constant string. If κ′ = 2µ′ the scheme has rate 1; it has optimal
preimage and collision resistance in the ideal cipher model, but in practice
the collision resistance will highly depend on the key scheduling of the block
cipher used [212].

Other schemes have also been designed by Lai and Massey and by Hirose;
we refer to [158, 212, 131] for further details.

MAC constructions

As already discussed in Section 2.6.1, MAC algorithms can be (heuristically)
derived from hash functions through standard constructions like HMAC and
NMAC. In the case of block cipher-based hash functions, other MAC con-
structions have also been designed. In these constructions, a block cipher
is used recursively to process message blocks, with a key equal to the MAC
key.

The most famous construction is the CBC-MAC [25, 26, 141, 142]

hi = E(s, hi−1 ⊕mi),

with a final output transformation g to avoid the simple forgery attack that
from E(s,m1), E(s,m1||m2) andE(s,m′1) returns E(s,m′1||m′2) = E(s,m1||m2)
for m′2 = m2 ⊕ E(s,m1) ⊕ E(s,m′1). The ANSI retail MAC [26] takes for
example

g(hN) := E(s1, E
−1(s2, hN)).

Other output transformations have been proposed, as well as other block
cipher-based MACs like XOR MAC, PMAC, 3GPP-MAC and XCBC. We
refer to [215] for a short description of these schemes, references to the original
papers, as well as generic attacks against block cipher-based MACs.
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3.4.3 Pros and contra

Building hash functions from block ciphers reduces design and evaluation
effort. The understanding and the trust we currently have in many block ci-
phers among which the AES can be somehow transferred to the hash function.
Most importantly, existing implementations of block ciphers can be reused
for hash functions, and in constrained environments the same resources can
be shared between encryption and hashing primitives.

On the other hand, existing block cipher-based constructions are quite
slow compared to custom designed hash functions because the block cipher
key is changed for each message block and the key schedule part of block
ciphers is often slow. This problem is unlikely to be solved [44]. Another,
important problem is that block ciphers may differ from the ideal cipher
model by weaknesses not relevant for encryption but very damaging in hash
constructions, like the complementation property of DES. In particular, the
key schedule of block ciphers might not be as strong as the block cipher itself.
Finally, patents and other legal export restrictions limit the use of some block
ciphers in the constructions.

3.5 Expander hashes: pros and contras

Expander hash functions will be fully described in Chapter 4 and their secu-
rity will be analyzed in subsequent chapters. In this section, we synthesize
the main advantages and drawbacks of this design strategy to allow compar-
ison with other provable hash functions.

Expander hash functions are constructed from regular graphs in a very
simple way: starting from some vertex in the graph, a walk is performed
that depends on the message digits, the last vertex reached being the hash
value (see Figure 4.4 in Section 4.2). This clear and simple design is an
advantage in itself as it facilitates the security evaluation process; it also
removes the necessity for a domain-extending transform like the Merkle-
Damg̊ard transform.

Some properties of expander hash functions follow from properties of
the graphs used, and other properties like collision and preimage resistances
admit interesting interpretations in terms of graphs. Bounds on the uniform
distribution of the outputs are straightforwardly derived from the eigenvalues
and the expanding properties of the graph. The minimal “distance” between
any pair of colliding messages is given by the girth of the graph. To a collision
corresponds either a cycle or two paths in the graph with the same starting
and ending vertices, and to a preimage corresponds a path between two given
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vertices.
Expander hashes have a malleability property that directly follows from

the design strategy: appending one digit to any message corresponds to
change its hash value by one of its neighbors in the graph. This malleabil-
ity property does not contradict preimage nor collision resistance but it is
undesirable in many applications of hash functions (see Chapter 8).

A Cayley hash is a particular kind of expander hash that uses a graph
constructed from a group (see Section 4.2.2). Collision and preimage resis-
tances of Cayley hashes admit further interpretations as the hardness of some
group theoretical problems, the representation, the balance and the factor-
ization problems. These problems are hard for generic groups and as hard
as the discrete logarithm problem in Abelian groups, but their complexities
are unknown for most particular groups. Table 3.1 presents graph and group
interpretations of expander and Cayley hashes properties.

Table 3.1: Correspondence between hash, graph and group properties. The
last column only applies to Cayley hashes.

Hash properties Graph properties Group properties
collision resistance cycle/

two-paths problem
representation /
balance problem

preimage resistance path-finding problem factorization problem
output distribution expanding properties Kazhdan constant
minimal collision
“distance”

girth

Among all Cayley hash proposals, the Zémor-Tillich hash function is the
only one surviving today. Collisions for the first Cayley hash proposal by
Zémor can be found with the Euclidean algorithm and both collisions and
preimages for LPS and Morgenstern hash functions can be found efficiently
(see Section 5.6.1 and Chapter 6). On the other hand, despite of some
cryptanalytic results, the Zémor-Tillich hash function has remained unbro-
ken since 1994 for well-chosen parameters, and LPS and Morgenstern hash
functions can be easily repaired in an apparently safe way (see Chapter 5 and
Section 6.5). The hardness of the representation problem in general, hence
the security of Cayley hashes, is a big open problem left by this thesis (see
Section 10.3.1).

The efficiency of expander hashes differs for each particular instance. The
Zémor-Tillich hash function is the most efficient expander hash but it is still
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10 to 20 times slower than SHA. LPS and Morgenstern hash functions are
a bit slower than Zémor-Tillich, and Pizer hash function is still an order of
magnitude slower.

Cayley hashes computation can be parallelized easily, which could benefit
efficiency in many applications.

The very clear and simple design of expander hashes makes them very
appealing hash functions but their collision resistance, despite its flavors of
“provable security”, is mainly an open problem. Expander hashes are defi-
nitely not pseudorandom functions due to the malleability property inherent
to their design. All proposals so far have been much slower than SHA, but
the parallelization property of Cayley hashes may compensate this issue in
applications requiring fast computation. In Chapter 9, we will present a hash
function based on the Zémor-Tillich hash function, that preserves its graph
and group-theoretical interpretations and its parallelism but does not have
its malleability properties.

3.6 Conclusion and further readings

Collision resistant hash functions may be constructed under some widely-
believed number theoretical assumptions and the practical hardness of some
knapsack problems, but the resulting functions are orders of magnitude
slower than specially designed hash functions like the SHA algorithm.

A few new algorithms have been designed in the recent years that trade
efficiency and security at a different level. Their efficiency is still not compa-
rable to SHA but they are already much faster than previous proposals; on
the other hand, their security relies on less standard assumptions that are
variants or particular cases of classical assumptions.

Among these proposals, the most important are VSH [76] which is only
25 times slower than SHA-1 and whose security relies on an assumption very
close to the factorization assumption, and SWIFFT [173], which is as efficient
as SHA-256 and whose security relies on the hardness of a particular class of
lattice problems. Similarly, the security of the SQUASH algorithm [243] as a
one-way function relies on an assumption close to factorizing, but SQUASH
is trivially not collision resistant.

There have also been many old and recent constructions of hash func-
tions and MAC algorithms based on block ciphers, a well-understood and
well-trusted cryptographic primitive. As Section 3.4 only sketches the main
constructions, we refer to [212, 46, 215] for further descriptions and refer-
ences. Block cipher-based hash functions tend to be slow due to the key
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schedule but in some cases they are provably secure assuming that the block
ciphers have “no structural weakness”.

We stress once again that the “provable” hash functions discussed here are
only provable in the sense of collision resistance. Setting apart block cipher-
based hash functions, the algebraic structure of all the functions described in
this chapter induces non random behaviors that impede their use as general
purpose hash functions. Block cipher-based hash functions do not suffer from
this problem but may have other problems specific to their block structure.

In the second part of this thesis, we describe and analyze expander hash
functions. Like VSH or SWIFFT, these functions are collision resistant under
hardness assumptions on partially new mathematical problems, but like these
functions they are not general purpose hash functions due to malleability
issues. Later in the third part, we will modify the Zémor-Tillich hash function
into ZesT to heuristically remove all its malleability properties.
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Chapter 4

From expander graphs to
expander hashes

Expander graphs have become a fundamental tool in computer science and
applied mathematics. They have found applications in communication net-
works, error correcting codes, pseudorandomness theory and in the study of
the convergence of Monte Carlo algorithms. The theory of expander graphs
is very rich and beautiful; it has geometrical, combinatorial, algebraical and
probabilistic interpretations. Although each of the many applications has
preferred its own interpretation and definition of expansion, strong connec-
tions exist between the various definitions and all now belong to the theory
of expander graphs.

An expander graph is a highly connected graph that has only a few edges
per vertex. If the graph models a social network (each vertex modeling a
person and each edge a friendship), a high expansion implies that rumors
will spread out very fast in the network. In particular, random walks in
regular expander graphs lead very quickly to a uniform distribution on the
vertices.

The exact amount of expansion in a graph is defined by its vertex or edge
expansion, by the spectral gap or by the second eigenvalue of its adjacency
matrix, and in the special case of Cayley graphs by its Kazhdan constant. For
very large classes of graphs, expansion in one sense is equivalent to expansion
in another sense.

The idea of building hash functions from expander graphs goes back to
Zémor [274, 275] and Tillich and Zémor [260, 258], and was independently
rediscovered by Charles et al. [68] more than ten years later. In this thesis,
we will call expander hash functions or simply expander hashes the hash
functions constructed following this design, and Cayley hash functions or

71
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simply Cayley hashes the expander hashes constructed with Cayley graphs.

Some properties of expander hashes can be naturally interpreted as graph
theoretical properties. The expanding property of the graph implies that the
hash values of sufficiently long messages are close to uniformly distributed.
Collisions and preimages correspond to cycles and paths in the graph and
the girth of the graph gives a bound on the minimal “distance” between any
pair of colliding messages.

All the graphs that have been used for expander hashes have a strong alge-
braic structure; their collision and preimage resistances are therefore related
to (more or less new) mathematical problems. Pizer hashes are collision
resistant if some problems on isogenies of supersingular elliptic curves are
hard. All the other expander hash proposals are Cayley hashes, in which
case collision and preimage resistances relate to the balance, representation
and factorization problems.

In this chapter, we introduce expander hash functions. Section 4.1 gives
basic graph definitions and fundamental results on random walks on graphs.
Section 4.2 gives the expander hash construction and general properties,
Section 4.3 reports all explicit constructions of expander hashes so far and
Section 4.4 points out that a few older schemes can also be seen as expander
hashes.

The systematic study of expander and Cayley hash properties (building
upon the work of Zémor [274, 275], Tillich and Zémor [260, 258] and Charles
et al. [258]) is one of the contributions of this thesis. Other contributions
presented in this chapter are the introduction of the Morgenstern hash func-
tion and a method to avoid most multiplications in the computation of the
LPS hash function. The method also applies to the Morgenstern hash func-
tion and to the modified versions of both functions that will be suggested
in Section 6.5. Finally, the connection between older schemes and expander
hash functions was worth pointing out.

4.1 Expander graphs

In this section, we give the main definitions and results concerning expander
graphs. Section 4.1.1 introduces basic graph notations, properties and def-
initions; Section 4.1.2 gives definitions of expansion; Section 4.1.3 describes
random walks in expander graphs and Section 4.1.4 discusses Cayley graphs.
We focus on the expander graph properties that are relevant for expander
hashes; the results are extracted for undirected graphs from the excellent
survey of Hoory et al. [133] and existing extensions to directed graphs are
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discussed. The reader interested in the many aspects of expander graphs
that we do not consider here is referred to [133].

4.1.1 Basic definitions and notations

A graph G is a couple of sets (V,E), where V is called the vertex set of G and
E ⊂ V × V is called the edge set of G. A subgraph G ′ of G is a graph whose
vertex and edge sets are subsets of the vertex and edge sets of G. Any edge
e = (v1, v2) ∈ E has two endpoints, a starting point v1 and an ending point
v2. A loop is an edge (v1, v2) such that v1 = v2. An edge e = (v1, v2) and a
vertex v are said to be incident if either v = v1 or v = v2. The in- and out-
degrees of a vertex v are the number of edges of which v is respectively the
ending and starting point; these are noted deg−(v) and deg+(v). A vertex
v1 is adjacent to another vertex v2 if (v1, v2) belongs to E; this is indicated
by v1 → v2. Two vertices v1, v2 ∈ V are neighbors in the graph if at least
one of (v1, v2) or (v2, v1) belongs to E; this is denoted by v1 ∼ v2. An edge
e1 = (v11, v12) is adjacent to another edge e2 = (v21, v22) if v12 = v21.

A graph G = (V,E) is said to be undirected if for each edge (v1, v2)
belonging to E, the edge (v2, v1) also belongs to E. A graph that is not
undirected is called a directed graph. In undirected graphs the in- and -out
degrees of any vertex v are equal; they are simply called the degree of v
and noted deg(v). The symmetrization of a directed graph G = (V,E) is an
undirected graph G∗ = (V,E∗) which has the same vertex set as G and such
that for any edge (v1, v2) belonging to E, the edges (v1, v2) and (v2, v1) both
belong to E∗.

Graphs have a natural graphical representation made of (labeled) points,
lines and arrows. To each vertex corresponds a point and to each edge
corresponds an arrow line from the starting point to the ending point. In
undirected graphs, arrows are naturally replaced by simple lines. Examples
of such representations for a directed and an undirected graph are shown in
Figure 4.1.

A path in a graph is a sequence of edges (e0, e1, ..., eµ−1) such that ei−1 is
adjacent to ei for 1 ≤ i ≤ µ−1. The length of a path (e0, e1, ..., eµ−1) is µ. A
path from a vertex v1 to a vertex v2 is a path (e0, e1, ..., eµ−1) such that v1 is
the starting point of e0 and v2 is the ending point of eµ−1. The distance from
a vertex v1 to another vertex v2 is the length of the shortest path between
v1 and v2.

A graph is connected if for any pair of vertices v1 and v2 there exists a
path from v1 to v2 or from v2 to v1; it is strongly connected if for any pair
of vertices v1 and v2 there exists a path from v1 to v2 and from v2 to v1.
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Figure 4.1: An example of drawing of a directed and an
undirected graph G = (V,E) and G = (V,E ′) with the
same vertex set V = {v1, v2, v3, v4, v5, v6} and edge sets E =
{(v1, v5), (v2, v1), (v2, v3), (v2, v5), (v4, v3), (v4, v5), (v4, v6)} and E ′ =
{(v1, v2), (v1, v5), (v2, v1), (v2, v3), (v2, v5), (v3, v2), (v3, v4), (v4, v3), (v4, v5),
(v4, v6), (v5, v1), (v5, v2), (v5, v4), (v4, v6)}.

The number of connected components in a graph is the minimal number
of disjoint connected subgraphs that together form the whole graph. The
diameter D of a graph is the largest distance between any two vertices of the
graph. (If a graph has two vertices with no path from v1 to v2, we say that
its diameter is ∞.)

A path (e0, e1, ...eµ−1) is a cycle if the endpoint of eµ−1 is the starting
point of e0. The girth g of a graph G = (V,E) is the largest g such that
for any two vertices v1 and v2 of V , any pair of distinct paths joining v1 to
v2 is such that at least one of those paths is at least g-long. For undirected
graphs, the girth is the smallest length of any cycle in the graph.

Graphs can be represented by their adjacency matrix AG ∈ N|V |×|V | (that
we write simply A when the graph is clear from the context), whose entry
(i, j) is the number of edges joining vi to vj. For example, the adjacency
matrix of the graphs represented in Figure 4.1 are respectively

0 0 0 0 1 0
1 0 1 0 1 0
0 0 0 0 0 0
0 0 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 and


0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

 .

The adjacency matrix of an undirected graph is a symmetric matrix,
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which means that A is equal to its transpose matrix A′. It is easy to check
that for any µ ≥ 0, the entry (i, j) of the matrix Aµ is the number of µ-long
paths from vi to vj. The eigenvalues of a graph are the eigenvalues of its
adjacency matrix, that are the roots of the polynomial equation det(A−λI) =
0. The eigenvalues of undirected graphs are all real; they will be noted by
λ1 ≥ λ2 ≥ ... ≥ λ|V |.

A graph is bipartite if its vertex set can be divided into two disjoint
subsets V1 and V2, such that any edge connects a vertex of V1 to a vertex of
V2 or vice-versa. For bipartite graphs, there exists an ordering of the vertices
such that the adjacency matrix has the form

A =

(
0 A12

A21 0

)
.

More generally, a graph is m-partite if its vertex set can be divided into m
disjoint subsets such that no edge has its starting and ending points in the
same subset.

A k-regular graph is a graph such that any vertex is the starting point of
exactly k edges; we say that the degree of such a graph is k. The elements
of any column of the adjacency matrix of a k-regular graph sum up to k.
Any k-regular graph has an eigenvalue equal to k to which corresponds the
left eigenvector v1 = (1, ..., 1). This eigenvalue is the largest eigenvalue of
the graph; its multiplicity is equal to the number of connected components
in the graph. Moreover, −k is an eigenvalue of a k-regular graph if and only
if the graph is bipartite [84]. More generally, if there are m eigenvalues λj of
absolute value k then λj = kρj with ρ = e2πi/m.

A weighted graph (G, ω) is a graph G = (V,E) together with a weight
function ω : E → [0, 1] such that

∑
v2 s.t. v1→v2 ω((v1, v2)) = 1 for all v1.

By extension, the adjacency matrix of a weighted graph is a matrix A ∈
[0, 1]|V |×|V |. Its entry (i, j) is equal to ω((vi, vj)); it is a stochastic matrix,
which means that the elements of each column sum up to 1. For undirected
weighted graphs, the adjacency matrix is doubly stochastic which means that
the elements of each column and each row sum up to 1.

The normalized adjacency matrix of a k-regular graph is its adjacency
matrix divided by k; it is a stochastic matrix and a doubly stochastic matrix
for undirected graphs. The Laplacian of an undirected graph is the matrix
L := D−A, where D is a diagonal matrix which entry (i, i) is equal to deg(vi).
The normalized Laplacian matrix of an undirected graph is I−D−1/2AD−1/2.
For k-regular undirected graphs, the Laplacian matrix is equal to L = kI−A
and the normalized Laplacian matrix to 1

k
(kI −A). Laplacian matrices have

an eigenvalue equal to 0 to which corresponds the left eigenvector (1, ..., 1).
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An automorphism of a graph is a permutation P of the vertices that pre-
serves the edges, that is such that (u, v) is an edge if and only if (P (u), P (v))
is an edge. A graph is vertex transitive if for any u, v ∈ V there is some
automorphism of the graph sending u to v. Vertex transitive graphs are
regular.

Graph representations may be more or less “human-readable” depending
on the relative positions of the vertices; for example the graph of Figure 4.2 is
identical to the right-hand graph of Figure 4.1 but much less “readable”. A
good heuristic for obtaining a graph representation that is well-drawn in the
plane is to associate planar coordinates equal to the ith entry of the second
and third eigenvectors of the graph to each vertex vi [250].
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v4

v5

v6

1

Figure 4.2: Another drawing of the undirected graph in Figure 4.1.

4.1.2 Expanding properties

The theory of expander graphs has been mainly defined for regular undi-
rected graphs, in which case the analysis is facilitated by the symmetry of
the adjacency matrix and in particular by the fact that all the eigenvalues are
real. In this thesis, we need expanding notions for regular directed graphs
as well, so we provide definitions that are as general as possible and discuss
possible extension of classical results to directed graphs.

Let S be a subset of vertices of a graph G = (V,E). We write S the
complement of S, that is V \ S. If S and T are two subsets of V , we write
E(S, T ) for the set of edges of E that have a starting point in S and an
ending point in T . For any subset S of V , we call edge boundary of S the
subset δ(S) := E

(
S, S

)
. We define the expansion of a directed graph both

backward and forward depending on whether we are considering the edges
going in or out of the set S. The notion of a family of k-regular expander
graphs follows naturally.



4.1. EXPANDER GRAPHS 77

Definition 4.1 The forward vertex expanding constant h+ and the back-
ward vertex expanding constant h− of a graph G = (V,E) are defined as

h+(G) = min
S⊂V,1≤|S|≤ |V |

2

|δ(S)|
|S|

and h−(G) = min
S⊂V,1≤|S|≤ |V |

2

|δ(S)|
|S|

.

In undirected graphs as well as in directed graphs such that deg+(v) = deg−(v)
at any vertex v, the forward and backward expanding constants are equal; their
value is simply called the vertex expanding constant and it is written h.

Definition 4.2 A sequence of k-regular graphs {Gn}n∈N of size increasing
with n is a family of expander graphs if there exists ε > 0 such that h(Gn) ≥ ε
for all n.

The vertex expanding constants h+ and h− of a directed graph are related
to its diameter D as follows: if h+, h− ≥ h then [275]

D ≤ log1+h

|V |
2

+ 1.

For undirected graphs this inequality can be improved slightly [24]. The
vertex expanding constants h+, h− of a k-regular directed graph are related
to the vertex expanding constant h of its symmetrization by [275]

min(h+, h−) ≥ h/(k + 1).

The vertex expanding constant is sometimes called Cheeger constant by
analogy to a similar constant in differential geometry. There exist other def-
initions of the boundary of a set S, for example involving neighbor vertices
sets rather than edges. To each boundary definition corresponds an ex-
panding constant definition and a definition of a family of expander graphs.
Chung [74] proposed another extension of the Cheeger constant to general
directed graphs. Extension of the definition of expander graph families to
non regular graphs also exists but is beyond the scope of this thesis.

The edge expansion constant is the most commonly used expanding con-
stant because of its remarkable connection with the spectral gap of the graph,
which is the difference between its first and second largest eigenvalues (as we
have already mentioned, the first eigenvalue of a k-regular graph is equal to
k).

Theorem 4.1 Let G be a k-regular undirected graph with spectrum λ1 = k ≥
λ2 ≥ ... ≥ λ|V |. Then

k − λ2

2
≤ h(G) ≤

√
2k(k − λ2).
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These inequalities are often called Cheeger inequalities ; they show that the
expander constant limits the spectral gap and conversely. The result is due
to Dodziuk [93] and independently to Alon-Milman [24] and Alon [21]; a
proof can also be found in [133], Section 4.5. Chung [74] has given Cheeger
inequalities for directed graphs; her result involves the eigenvalues of a well-
defined Laplacian instead of the eigenvalues of the adjacency matrix. As far
as we know, there is no result relating the (absolute values of the) eigenvalues
of a directed graph to its expanding constants. A generalization would not
be trivial because all current proofs exploit properties specific to symmetric
matrices, in particular they use the existence of an orthonormal basis of
eigenvectors.

Theorem 4.1 suggests an alternative definition of expansion based on the
eigenvalues gap, which we will call spectral expansion. Let λ1 = k, λ2, ..., λ|V |
be the eigenvalues of a k-regular graph and let λ := maxi 6=1 |λi|.

Definition 4.3 A sequence of k-regular graphs {Gn}n∈N of size increasing
with n is a family of spectral expander graphs if there exists ε > 0 such that
k − λ(Gn) ≥ ε for all n.

In the light of Cheeger’s inequalities, spectral expansion implies expansion
in the sense of Definition 4.2 for undirected graphs but the converse is not true
in general and the two definitions cannot be related for directed graphs. The
following theorem is useful to prove spectral expansion in concrete graphs.

Theorem 4.2 [75] If G is a strongly connected k-regular graph and λ is its
second to largest eigenvalue in absolute value, then k > λ if and only if the
greatest common divisor of all the cycle lengths of G is 1.

The expansion of regular undirected graphs can not be too large because
of the following lower bound.

Theorem 4.3 For every k-regular undirected graph with |V | vertices,

λ2 ≥ 2
√
k − 1

(
1−O(1/ log2 |V |)

)
.

In particular,
lim
|V |→∞

λ ≥ 2
√
k − 1.

The result follows from Nilli [195] and Friedman [108]; two proofs are given in
Section 5.2 of [133]. The second inequality is often called the Alon-Boppana
bound ; it does not generalize to directed graphs as shown by the “DL graphs”
of Section 4.4, neither does it generalize to the Laplacian eigenvalues defined
by Chung [74]. The Alon-Boppana bound motivates the following definition
of a very interesting class of extremal graphs.
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Definition 4.4 A family of k-regular undirected graphs {Gn} is Ramanujan
if λ(Gn) ≤ 2

√
k − 1 for all n.

Ramanujan graphs are graphs whose expansion is asymptotically maximal
in the spectral sense. Alternative definitions have also been proposed that
could be generalized to non regular undirected graphs, for example Definition
6.7 in [133]. The very first family of Ramanujan graphs, the LPS graph fam-
ily, was discovered by Lubotzky et al. [167] and independently by Margulis.
The name Ramanujan was chosen after the Ramanujan conjecture [224] for
varieties over finite fields (proved by Deligne) involved in Lubotzky et al.’s
proof of the eigenvalue bound. The LPS graphs are used in the LPS hash
construction of Section 4.3.4.

4.1.3 Random walks on expander graphs

The previous section described some of the combinatorial and algebraic as-
pects of expander graphs; we now take the statistical perspective for which
the spectral definition of expander graphs is the most relevant. Expander
graphs share many properties with random graphs, and random graphs are
indeed most likely to be expanders. The set of vertices that are reached dur-
ing a random walk on an expander graph is close to what a randomly chosen
set of vertices would be, and the distribution of the final vertices reached by
the random walk tends very fast to the uniform distribution.

The simplest connection of expander graphs with random graphs is known
as the Expander Mixing Lemma.

Lemma 4.1 Let G be a k-regular undirected graph with |V | vertices and let
λ = λ(G) = max(|λ2|, |λ|V ||). Then for all S, T ⊂ V :∣∣∣∣E(S, T )− k|S||T |

|V |

∣∣∣∣ ≤ λ
√
|S||T |.

The proof of this simple result can be found in [133], Section 2.4. It uses
the existence of an orthonormal basis of eigenvectors and hence it does not
generalize to directed graphs. The term E(S, T ) is the number of edges

between S and T in the graph and k|S||T |
|V | is the expected number of edges

between two randomly chosen sets of vertices; the expander mixing lemma
tells us that the two terms cannot be too different in expander graphs.

We now discuss the convergence of random walks on expander graphs.
Recall that a weight function ω : E → [0, 1] on the edges of the graph defines
an adjacency matrix A ∈ [0, 1]|V |×|V | which is a stochastic matrix. We see
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distributions on the vertices as column vectors of length |V | with entries in
[0, 1] that sum up to 1. Given a weight function and an initial distribution
π0 on the vertices, a random step in the graph produces the distribution
π1 := Aπ0. A random walk of length µ is obtained by iterating a random
step µ times; it produces the distribution πµ = Aµπ0. The standard walk is
the walk that associates the weight 1

deg+(v)
to any edge with starting point v.

Two natural questions on random walks are whether they converge to
some asymptotic distribution as their length increases, and which is the
rate of the convergence. These questions have found answers in the Perron-
Frobenius theory applied to stochastic matrices [160].

Stochastic matrices have an eigenvalue λ1 = 1 to which is associated
a left eigenvector v̂1 = (1, ..., 1) and a positive right eigenvector v1 called
the Perron-Frobenius vector. For regular graphs and for undirected graphs,
this vector is v1 = 1

|V |(1, ..., 1)t. Increasing powers of a stochastic matrix A

converge if and only if maxi 6=1 |λi(A)| < 1. In this case, for v1 normalized
such that ||v1||1 = 1, we have

lim
µ→∞

Aµ = v1v̂1.

For any initial distribution π on the vertices, the asymptotic distribution is

lim
µ→∞

Aµπ = v1v̂1π = v1.

Random walks on spectral expander graphs always converge to an asymp-
totic distribution given by the Perron-Frobenius vector. The rates of con-
vergence will be given by Equations (4.1), (4.2) and (4.3) for random walks
on undirected graphs, for random walks on directed graphs and for non-
backtracking random walks on undirected graphs.

For simplicity, we first describe random walks on undirected graphs. In
this case, the matrix A is symmetric hence it can be written as

A =

|V |∑
i=1

λiviv
′
i

where the λi are the eigenvalues of A and {vi} is an orthonormal basis of
eigenvectors. Let again λ be the largest non-trivial absolute value of the
eigenvalues, that is λ = max(|λ2|, |λ|V ||).

Let π be any probability distribution on V . The vector π−v1 is orthogonal
to v1 because v′1(π − v1) = v′1π − v′1v1 = 0. Let π − v1 =

∑|V |
i=2 αivi be the
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decomposition of π − v1 in the orthogonal eigenvector basis. We have

||Aπ − v1||22 = ||A(π − v1)||22 =

∣∣∣∣∣∣
∣∣∣∣∣∣
 |V |∑

i=1

λiviv
′
i

 |V |∑
i=2

αivi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
|V |∑
i=2

λiαivi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

=

|V |∑
i=2

|αiλi|2 ≤ λ2||π − v1||22

and for the probability distribution π = (π1, ..., π|V |)′, we have

||π − v1||22 =

|V |∑
i=1

(
πi −

1

|V |

)2

=

|V |∑
i=1

π2
i + |V |

(
1

|V |

)2

− 2

|V |

|V |∑
i=1

πi

= ||π||22 −
1

|V |
≤ ||π||21 −

1

|V |
< 1

hence
||Aµπ − v1||2 ≤ λµ||π − v1||2 < λµ. (4.1)

In undirected graphs, the distribution of the final vertex reached by a ran-
dom walk gets closer to its asymptotic distribution by a factor at least λ at
each step, resulting in an exponential decay of the distance to asymptotic
distribution after only a linear number of steps.

In directed graphs, the convergence of random walk is more difficult to
show because the eigenvector basis is no longer orthogonal. As we still assume
that λ < 1, the random walk converges to a distribution v1. For directed
graphs, it is not possible to prove that the distribution gets closer to v1 at
any step in norm 2 but this property is true asymptotically.

Let A = TAJT
−1 be the Gauss-Jordan decomposition of A, with AJ =

diag{1, A11, ..., Ann}, Aii = diag{Ji,n1 , ...Ji,ns} and

Ji,nj =



λi 1 0 0
0 λi 1 0

. . . . . . . . . . . .

0 λi 1 0
0 λi 1

0 0 λi




nj.

By exponentiating we haveAµ = TAµJT
−1, withAµJ = diag{1, Aµ11, ..., A

µ
kk},

Aµii = diag{Jµi,n1
, ...Jµi,ns} and (Jµi,nj)a,b =

(
µ
l

)
λp+b−ai . ForA1 = diag(1, 0, ..., 0)
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and ÂJ = AJ − A1, we get

||Aµ − TA1T
−1||2 = ||T (AµJ − A1)T−1||2

≤ κ2(T )||AµJ − A1||2 = κ(T )||ÂµJ ||2

where κ2(T ) = ||T ||2||T−1||2 is the condition number of T . The matrix
TA1T

−1 can be identified with v1v̂1: the first column of T and the first row
of T−1 are respectively the right and left eigenvectors of A associated to the
eigenvalue 1. We finally get for any initial distribution π

||Aµπ − v1||2 = ||Aµπ − v1v̂1π||2 = ||Aµπ − TA1T
−1π||2

≤ ||Aµ − TA1T
−1||2||π||2 ≤ κ(T )||π||2 · ||ÂµJ ||2.

By Gelfand’s formula, limµ→∞ ||ÂµJ ||
1/µ
2 = ρ(ÂJ) where ρ(ÂJ) = max{|λi(ÂJ)|} =

maxi 6=1{|λi(A)|} = λ is the spectral radius of ÂJ . Therefore,

lim
µ→∞

||Aµπ − v1||1/µ2

λ
≤ 1, (4.2)

which shows that asymptotically at least, the norm-2 distance to the asymp-
totic distribution decreases by a constant factor at least λ at each step. A
non-asymptotic exponential decay may also be obtained if by using the χ-
square metric instead of the norm-2 distance [75].

The relevant eigenvalues here are the eigenvalues of A, in particular its
second to largest eigenvalue in absolute value. The eigenvalues used by Chung
to generalize the Cheeger inequalities [74] are not relevant here, even if for
undirected graphs the two definitions are equivalent. The eigenvalues defined
by Chung are relevant for the convergence of some lazy walks, that are walks
which with probability 1

2
do not move at any neighbor.

We now turn back to undirected graphs to discuss the convergence rate of
non-backtracking random walks that are especially relevant for the analysis
of expander hashes constructed from undirected graphs. A non-backtracking
walk in an undirected graph is a walk that does not backtrack, that is no
edge (v1, v2) in any path can be directly followed by the edge (v2, v1). A
non-backtracking random step from a vertex v2 coming from v1 is performed
by randomly choosing a neighbor vertex of v2 that is different from v1. In
a non-backtracking random walk from a vertex v, one neighbor of v is ran-
domly chosen in the first step and then successive non-backtracking steps are
performed on the graph. Non-backtracking random walks starting from gen-
eral distributions are defined accordingly, that is by doing a weighted sum of
the distributions resulting from the non-backtracking random walks starting
from each vertex.
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Alon et al. [22] have studied these walks in regular undirected graphs and
related their convergence to the convergence of classical random walks in the
same graphs. Let P

(µ)
uv be the probability that a non-backtracking walk of

length µ that starts from u ends up in v; the probability that a classical walk
of length µ that starts from u ends up in v is the entry (u, v) of the matrix
Aµ and will be noted Aµuv. Alon et al. have shown that non-backtracking
walks in regular undirected graphs converge if the corresponding standard
walks converge. The mixing rate and the non-backtracking mixing rate of a
random walk and non-backtracking random walk with adjacency matrix A
and asymptotic distribution v1 are [22]

ρ = lim sup
µ→∞

max
u,v∈V

|Aµuv − v1|1/µ .

ρ̃ = lim sup
µ→∞

max
u,v∈V

∣∣P (µ)
uv − v1

∣∣1/µ .
The first rate is equal to λ because ρ = lim supµ→∞ ||Aµ − v1v̂1||1/µmax =

lim supµ→∞ ||Aµ − v1v̂1||1/µ2 = λ as the matrix max norm and norm 2 are
equivalent. Alon et al. show that

ρ̃(G) = ψ

(
λk

2
√
k − 1

)
/
√
k − 1, (4.3)

with the function ψ defined as

ψ(x) =

{
x+
√
x2 − 1, if x ≥ 1;

1, if 0 ≤ x ≤ 1.

In particular if λ ≥ 2
√
k−1
k

then

k

2(k − 1)
≤ ρ̃

λ
≤ 1

and if λ < 2
√
k−1
k

and d = |V |o(1) then

ρ̃

λ
=

k

2(k − 1)
+ o(1)

where the o(1) term tends to 0 as |V | → ∞.

The convergence of random walks can be also characterized by their mix-
ing time

τ(ε) := min{µ : ||Aµ − v1v̂1|| ≤ ε}
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where ε > 0 and ||.|| is some matrix norm. The mixing time can be related to
the diameter in undirected graph and to a modified version of the diameter
in directed Cayley graphs [189].

We conclude this section with another random property of random walks
in expander hashes: the probability that a random walk stays in a set of
vertices decreases exponentially with its length. This result can be found in
Ajtai et al. [20] and Alon et al. [23]; a proof is given in [133]. The proof gen-
eralizes to regular directed graphs if the eigenvalues are replaced by singular
values.

Theorem 4.4 Let G be k-regular undirected graph with |V | vertices and let
λ = αk := max(|λ2(G)|, |λ|V |(G)|). Let B ⊂ V with |B| = β|V |. Then the
probability that a random walk starting from a vertex uniformly chosen in B
stays in B, is bounded by (β + α)t.

4.1.4 Cayley graphs

A Cayley graph CG,S is a graph constructed from a group G and a subset S
of G as follows: V contains a vertex vg associated to each element g ∈ G,
and E contains the directed edge (vg1 , vg2) if and only if there is an s ∈ S
such that g2 = g1s. For a set S of size k, the Cayley graph CG,S is a k-
regular graph. If S is symmetric, that is if s ∈ S if and only if s−1 ∈ S, the
graph is undirected. The graph is connected (and even strongly connected)
if and only if the elements of S generate the whole group. Cayley graphs are
vertex transitive as for any g1, g2 ∈ G the mapping vx → vg2g−1

1 x is a graph
automorphism that sends g1 to g2. The elements of S will be called the graph
generators . An example of Cayley graph is represented in Figure 4.3.

0 1

2

3

45

6

7

1

Figure 4.3: Cayley graph CG,S where G is the additive group modulo 8 and
S = {1, 2}.
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The diameter of Cayley graphs of finite non-Abelian groups is often ex-
pected to be small. For finite simple groups, this follows from Babai’s con-
jecture [30].

Conjecture 4.1 (Babai) There exists a constant c such that for any non-
abelian finite simple group G, for any symmetric set S ⊂ G that generates
G,

D(GG,S) < (log |G|)c.
If K is a finite field, the conjecture is true for the group PSL(2, K) if and
only if it is true for the (non simple) group SL(2, K); for K = Fp it was
proved by Helfgott [129].

An infinite family of groups {Gn} can be made into a family of expanders
if there is some constant k and a generating set Sn of size k in each Gn so
that the family {CGn,Sn} is a family of expanders [133]. Abelian groups and
more generally solvable groups of bounded length cannot be made expanders
with generating sets of bounded size [133, 168]. On the other hand, most
simple groups can be made into families of expanders, as well as the special
linear groups SL(d, pm) for any d ≥ 2, m ≥ 1 and prime p [149].

The study of expanding properties in Cayley graphs constructed from
Abelian groups G amounts to the study of its characters, that are the homo-
morphisms from G to C.

Proposition 4.1 Let A be the normalized adjacency matrix of a Cayley
graph CG,S. Let χ be a character of G. Then the vector (χ(g))g∈G is an
eigenvector of A with eigenvalue 1

|S|
∑

s∈S χ(s).

Proposition 4.1 is Proposition 11.7 in [133]. This approach is generalized
in non-Abelian groups G by the study of the representations of the groups,
that are homomorphisms from G to matrix groups over C. However, these
representations are often hard to analyze in practice except for generating
sets S with a special structure [133].

The notion of expansion is translated in group terminology by the Kazh-
dan constant. Let the regular representation r of a group G be the repre-
sentation that to any g ∈ G associates a matrix of size |G| which is 1 at
the entries corresponding to (u, ug) for all u and 0 elsewhere. The Kazhdan
constant of G and S is defined by

K(G,S) = min
v∈C|G|,v⊥1

max
s∈S

||r(s)v − v||2

||v||2
.

For a group G and a symmetric subset thereof S of size k, the Kazhdan
constant K(G,S) is related to the spectral gap of CG,S by [133]

K(G,S)

2k
≤ k − λ2 ≤

K(G,S)

2
.
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4.2 Expander hashes

We now describe the expander hash construction and its properties. Sections
4.2.1 and 4.2.2 give the construction for general and Cayley graphs. Sections
4.2.3 and 4.2.4 provide graph-theoretical and group-theoretical interpreta-
tions of collision and preimage resistances. Section 4.2.5 relates the out-
put distribution with the expansion property, discusses the use of expander
hashes as universal hash functions and points out the limits of randomness
extraction with expander hashes. Finally, Sections 4.2.6 and 4.2.7 describe
generic attacks against expander hashes and the malleability property that
is inherent to their design.

4.2.1 General construction

An expander hash function is determined by the description of a regular
expander hash, a starting point or a starting edge, and a neighbor order-
ing function. This section first gives the hash algorithm first for directed
graphs then for undirected graphs, and subsequently discusses possible key
generation algorithms.

Let G be a k-regular directed expander graph. (We assume that the
graph is strictly directed which means that it has no undirected edge.) Let
v0 be a vertex in this graph that we will call the starting point. Let θ :
V × {0, ..., k − 1} → V be a neighbor ordering function which means that
for any v ∈ V , the set {θ(v, i)|i ∈ {0, ..., k − 1}} contains all the vertices to
which v is adjacent. Given a message m, the hash algorithm decomposes this
message into k-digits, that is m = m0...mµ−1 with mi ∈ {0, ..., k − 1}. Then
from i = 0 to µ − 1 it successively computes vi+1 := θ(vi,mi) and it finally
returns vµ−1. To any hash computation corresponds a walk in the graph
of which the successive vertices are v0, v1, ..., vµ−1 (see Figure 4.4), the hash
value being the last vertex reached by the walk. Of course, the vertices should
be mapped to bitstrings in a bijective way to conform with definitions such as
Definition 2.4. In the following, we abuse notations by implicitly extending
all our definitions from bitstrings to vertices of a graph. Conforming with
the original definitions just requires defining a bijective final map.

For k-regular undirected graphs the construction is identical except that
the neighbor ordering function is adapted to explicitly forbid backtrack-
ing. Indeed, if backtracking is allowed then trivial collisions are obtained
by moving from the starting point to one of its neighbors, then turning
back to the starting point. Let k′ := k − 1. The neighbor ordering func-
tion θ : E × {0, ..., k′ − 1} → V now takes an edge rather than a vertex as
first argument, and a symbol in {0, ..., k′ − 1} rather than in {0, ..., k − 1}
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Figure 4.4: Computation of the hash value of m = 101 in the graph of
Figure 4.3, with starting vertex 0 and a neighbor ordering function defined
by θ(v, 0) = v + 2 mod 8 and θ(v, 1) = v + 1 mod 8.

in the second argument, and is such that for any e = (v1, v2) ∈ E, the
set {θ(e, i)|0 ≤ i ≤ k′ − 1}

⋃
{v1} is the set of neighbors of v2. Similarly, the

starting point is replaced by a starting edge e0 = (v−1, v0) in the construction.
Given a message m, the hash algorithm decomposes this message into

k′-digits, that is m = m0...mµ−1 with mi ∈ {0, ..., k′ − 1}. Then from i = 0
to µ − 2 it successively computes vi+1 := θ(ei,mi), ei+1 := (vi, vi+1) and it
finally returns vµ−1. To any hash computation corresponds a walk in the
graph of which the successive vertices are v0, v1, ..., vµ−1 (see Figure 4.5), the
hash value being the last vertex reached by the walk.
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Figure 4.5: Computation of the hash value of m = 1202 in a 4-regular graph,
with starting edge (7, 0) and a neighbor ordering function such that for any
e ∈ E, θ(e, 0) < θ(e, 1) < θ(e, 2).

These two constructions only make sense if the neighbors of any vertex
in the graph may be computed efficiently. (Of course, all existing expander
hash constructions satisfy this requirement.) We also remark that the output
of the hash function is a vertex in the graph, which is an abstract object. To
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match Definition 2.4 and most applications, this output should be mapped to
a bitstring in an efficient injective way. When the vertex size is not a power
of two, which is the case in all expander hash proposals so far, the final
mapping cannot be bijective and hence some output bits might be weaker
than others. In most of this thesis, we will ignore this problem and consider
the trivial generalizations of hash function definitions from bitstrings output
sets to arbitrary output sets. In Chapter 9, we will come back to this issue
when trying to design a practical hash function from the Zémor-Tillich hash
function.

Expander hashes may be seen as the Merkle-Damg̊ard transform of a very
simple compression function. This compression function may be defined as

h(s, v||mi) := θ(v, i)

in the directed case and as

h(s, (v1, v2)||mi) := (v2, θ((v1, v2),mi))

in the undirected case. The comparison does not go much further because
these compression functions are trivially not preimage resistant if the degree
of the graph is small, which is the case in all existing proposals. The functions
h above are collision resistant if there is no multiple edge, but simply because
they are bijective in that case. Alternative compression functions h′ may be
defined as the composition of many steps h; the assumption underlying the
expander hash design is that h′ may become preimage and collision resistant
if a sufficient number of steps are performed.

The key generation algorithm may a priori be defined in various ways,
depending on “where the randomness is put”. We stressed in Chapter 2
that some randomness must be set in the key for the definition of collision
resistance to make sense. This randomness may be introduced in the choice
of the parameters of the graph family, in the vertex or edge starting point
and/or in the neighbor ordering function. The bibliography of expander
graphs has not explicitly considered this issue so far; as the starting point or
vertex and the neighbor ordering function have often been fixed in existing
constructions, the randomness was implicitly put in the graph parameters.

From now on, we will assume that the neighbor ordering function is fixed
for all graphs in the family, hence it may be considered as a part of the hash
algorithm definition rather than as a part of the key. A collision for some
neighbor ordering function can be easily translated into a collision for another
neighbor ordering function (all the remaining parameters being equal), hence
varying this function does not add any security.
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Introducing randomness in the starting point or edge is a natural idea and
it facilitates the proofs that the output distribution is uniform. However, if
the randomness is set only in the starting point, the hash function is definitely
not strongly universal (see Section 4.2.5). Moreover, varying the starting
point does not add any security in the particular case of Cayley hashes (see
Section 4.2.3), and it introduces trapdoor attacks if some starting points are
weaker than others.

Randomness must be put in the choice of the graph parameters, at least
for Cayley hashes. For example, the polynomial of the Zémor-Tillich hash
function or the large prime of LPS hash function have to be chosen according
to some distribution on the set of “good” parameters. Additional random-
ness on the starting point may be useful for some applications but is not
mandatory; in existing proposals the starting point has always been set con-
stant. We will specify later for each particular function how the parameters
should be chosen.

4.2.2 Cayley hashes

Cayley hashes are expander hashes constructed from expander Cayley graphs.
In a Cayley graph GG,S, the vertices are identified to group elements and the
edges to the elements of S. The neighbor ordering functions have efficient
descriptions with the elements of S.

In directed Cayley hashes, the set S is such that for any s ∈ S, s−1 6∈ S.
We order the elements of S as S = {s0, ..., sk−1}. The starting point is an
element g0 ∈ G, and the neighbor ordering function takes the simple form

θ : G× {0, ..., k − 1} → G : (g, i)→ gsi.

Given a message m = m0...mµ−1 where mi ∈ {0, ..., k− 1}, the hash value of
m is

H(m) = g0

µ−1∏
i=0

smi := g0sm0sm1 ...smµ−1 .

In undirected Cayley hashes, the set S is symmetric which means that
for any s in S, s−1 also belongs to S. Let again k := |S| and k′ := k−1. The
starting edge is an edge (g0s

−1
−1, g0) where g0 ∈ G and s−1 ∈ S. The neighbor

ordering function θ : S × {0, ..., k′ − 1} → S now maps an element of S and
a k′-digit to an element of S; it is such that for any s ∈ S,

{θ(s, i)|0 ≤ i ≤ k′ − 1} ∪ {s−1} = S.
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Given a messagem = m0...mµ−1 wheremi ∈ {0, ..., k′−1}, the hash algorithm
successively computes si = θ(si−1,mi) and vi = vi−1si for i from 0 to µ− 1.
The hash value of m is

H(m) = g0

µ−1∏
i=0

si := g0s0s1...sµ−1.

The key of a Cayley hash is composed of the description of a group G,
a subset S of this group, an initial group element (plus an initial subset
element for undirected hashes) and a neighbor ordering function. Most often
the randomness of the key will be put in the parameters defining G and all
the other parameters will be considered as part of the hash algorithm.

4.2.3 Paths and cycles-finding problems

Collision and preimage resistance of expander hashes have natural graph
interpretations. Finding a collision is finding two paths starting at the origin
and ending at the same vertex. If the graph is undirected, this is just as hard
as finding a cycle through the origin. Finding a preimage is finding a path
starting at the origin and ending at some given vertex. (See Figure 4.6.)
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Figure 4.6: Finding a collision is finding two paths from the origin to the
same vertex, hence a cycle for undirected graphs. Finding a preimage is
finding a path between two vertices.

Problem 4.1 (Constrained two-paths problem) Given a (randomly se-
lected) starting point v0 in a (randomly selected) graph G, find two paths in
G of length at most L that start in v0 and end at the same vertex.

Problem 4.2 (Constrained cycle problem) Given a (randomly selected)
starting point v0 in a (randomly selected) graph G, find a cycle in G of length
at most L that goes through v0.
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Problem 4.3 (Path problem) Given a (randomly selected) starting point
v0 and an ending point v in a (randomly selected) graph G, find a path in G
of length at most L that starts in v0 and ends in v.

Problem 4.4 (Two-path problem) Given a (randomly selected) graph G,
find two paths in G of length at most L that start and end at the same vertices.

Problem 4.5 (Cycle problem) Given a (randomly selected) graph G, find
a cycle in G of length at most L.

Problems 4.1 to 4.3 are relevant for the collision and preimage resistances
of expander hashes. The hardness assumptions related to these problems is
that they are hard when the graph and/or the starting point are randomly
selected. For the notion of hardness to make sense the graph G must be taken
from a family of graph {Gn} with increased size. The security parameter
related to these problems may be taken as the logarithm of the number of
vertices in the graphs. Of course, the hardness of Problems 4.1 to 4.5 depends
on each particular family of graphs. In this thesis, we will discuss families
for which they have been invalidated and others for which they still seem
plausible.

The problems are parameterized by the maximal length L allowed for
the paths. In the case of Cayley hashes, the path corresponding to the
factorization sord(s) = 1 provides a trivial collision with the void message
for any s ∈ S, but is useless in practice if the elements of S have very
large order. Problems 4.4 and 4.5 may be easier than Problems 4.1 and 4.2
in general but they are equivalent in the important case of Cayley hashes.
Indeed,

∏µ−1
i=0 si =

∏µ′−1
i=0 s′i if and only if g0

∏µ−1
i=0 si = g0

∏µ′−1
i=0 s′i for any

g0 ∈ G.

The girth of the graph can be interpreted as the smallest “distance”
between any two colliding messages, in the sense that if m = m1||m2||m3

and m′ = m1||m′2||m3 hash to the same value (where m1,m2,m
′
2,m3 are

digit strings) then the length of at least one of m2 or m′2 is at least equal to
the girth. A graph with a small girth may lead to an insecure hash function,
especially if the attacker may choose the initial point of the hash computation
or if the graph is vertex transitive (in particular if it is a Cayley graph). In a
vertex transitive graph with small girth, there exist short collisions starting
from any vertex, hence whatever the starting point is, a short collision can
be found by exhaustive search. For graphs that are not vertex transitive,
even cycles or “two-paths” of length 1 may be acceptable if their vertices
are hard to reach from a given (possibly, a randomly chosen) starting point
(Figure 4.7). However, in this case the key generation algorithm must be
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trusted as trapdoor attacks may be mounted by the person who chooses the
initial vertex (see Section 4.2.6).

v0 ...
v? v′

1

Figure 4.7: If the initial vertex v0 is randomly chosen, a graph with small
girth may still produce a safe hash. If the attacker is allowed to choose the
initial point, the hash becomes insecure as he can choose v0 = v.

4.2.4 Balance, representation and factorization prob-
lems

Collision and preimage resistances of Cayley hashes have further interpre-
tations as group-theoretical problems. For a product of group elements
g0g1...gµ−1, let µ be the length of this product. A product g0g1...gµ−1 is
said to be a reduced product if gigi+1 6= 1 for 0 ≤ i ≤ µ− 2.

Problem 4.6 (Representation problem) Given a group G and a subset
S thereof, find a reduced product of subset elements of length at most L that
is equal to the unit element of the group, that is∏

0≤i<µ
si = 1

with si ∈ S, sisi+1 6= 1 and µ ≤ L.

Problem 4.7 (Balance problem) Given a group G and a subset S thereof,
find two reduced products of subset elements of lengths at most L that are
equal, that is ∏

0≤i<µ
si =

∏
0≤i<µ′

s′i

with si, s
′
i ∈ S, sisi+1, s

′
is
′
i+1 6= 1 and µ, µ′ ≤ L.



4.2. EXPANDER HASHES 93

Problem 4.8 (Factorization problem) Given a group G, a subset S thereof
and a group element g, find a reduced product of subset elements of length at
most L that is equal to g, that is ∏

0≤i<µ
si = g

with si ∈ S, sisi+1 6= 1 and µ ≤ L.

Problems 4.6, 4.7 and 4.8 are the group-theoretical equivalent of Problems
4.5, 4.4 and 4.3 for Cayley hashes. The problems are potentially hard only if
L is not too large (polynomial in log |G|). A trivial solution to Problem 4.6
is sord(s) = 1 for any s ∈ S but for large groups and well-chosen S, the length
of this factorization is far too large to correspond to a practical message.
Problem 4.6 is harder than Problem 4.7 in general but is equivalent if the
set S is symmetric, that is for undirected Cayley hashes. Problem 4.6 is a
particular instance of Problem 4.8 with g = 1.

Representation problems have been long studied in Spectral Graph The-
ory of Cayley graphs [133]; balance problems have been introduced in [38] for
Abelian groups and factorization problems are well-studied in other settings.
Finding the shortest representation and factorization are hard problems for
generic groups [144, 96]. The representation problem is as hard as the dis-
crete logarithm problem in Abelian groups [38]. For special linear groups,
it has been solved for a few particular cases corresponding to Cayley hashes
proposals (see Section 5.6.1 and Chapter 6) but it might still be hard in
general (see Chapter 5).

Factorization problems arise naturally when trying to show that partic-
ular groups can be made into expanders or to prove Babai’s conjecture (see
Section 4.1.4 and [133]), two research topics that have been actively con-
sidered in the last two decades. Typically, these problems only consider
symmetric sets, but we expect that any successful attack against generic
undirected Cayley hashes would likely generalize to directed Cayley hashes.

It has recently been proved that special linear groups over finite fields
can be made into expanders [149] and that Babai’s conjecture is true for
PSL(2,Fp) [129]. These results imply that Problem 4.8 has solutions for the
corresponding groups when L is a polynomial function of log |G|. However, as
the proofs of these results do not produce explicit factorizations of the group
elements, they are still far from solving Problems 4.6 to 4.8. To threaten
the collision and preimage security of Cayley hashes in general, the expander
theory of Cayley graphs and the proof techniques for Babai’s conjecture
would require significant further progress.
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4.2.5 Output distribution and randomness extraction

We now consider statistical properties of expander hashes. The random walk
theorems seen in Section 4.1.3 may be used to prove that the outputs of
expander hashes are nearly uniformly distributed for any key and for suf-
ficiently long messages. These theorems and the common use of expander
graphs for randomness amplification [133] suggest that expander hashes may
be used to smooth probability distributions like universal hash functions in
the left-over hash lemma (see Section 2.6.3 and Lemma 2.1). However, we
show that expander hashes are not universal hash functions in general and
that in some cases they may remove all the entropy contained in particu-
lar messages. Expander hashes still appear promising for universal hashing
and entropy extraction, but at least some further work and an adaptation
of the definitions would be needed in order to derive (good proofs of) these
properties.

The outputs of expander hashes are well-distributed. As shown in Sec-
tion 4.1.3, a random walk in a graph converges when the largest absolute
value λ of the non-trivial eigenvalues of the normalized adjacency matrix
of the graph is strictly smaller than 1, hence by Theorem 4.2 if the graph
is strongly connected and if the greatest common multiple of all its cycle
lengths is one. Under this condition, the distribution of the expander hash
values of uniformly randomly chosen messages converges to uniformity as
the lengths of the messages increase. The rates of convergence are given by
Equation (4.2) for expander hashes constructed from directed graphs and by
Equation (4.3) for expander hashes constructed from undirected graphs.

Expander hash functions are not universal hash functions nor randomness
extractors in general. Let us first assume that the graph is fixed, hence the
randomness in the key is put only in the selection of an initial vertex or
edge. In Cayley hashes, if sm0 ...smµ−1 = sm′0 ...sm′µ′−1

then g0sm0 ...smµ−1 =

g0sm0 ...s
′
mµ′−1

for all g0, hence

Pr
g0∈G

[H(g0,m) = H(g0,m
′)] = 1

which shows that Cayley hashes are not universal hash functions if the
key does not include the graph parameters. Similarly for general expander
hashes, the probability

Pr
g0∈G

[H(g0,m) = h ∧H(g0,m
′) = h′]

will be biased in favor of closely related messages when h and h′ are neighbors
in the graph. Similarly, let m0 and m1 be two messages corresponding to
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paths in the graphs that both start and end at the initial point v0. Let us
consider the set of messages of the form m = me1 ||...||meE , for any bitstring
e1...eE. This set has an entropy E but on the other hand, all the walks
defined by its messages end up at the same point, therefore contradicting
randomness extraction.

Despite our counterexamples, expander hash functions might be used as
universal hash functions and as randomness extractors if their key generation
algorithms generate random instances of the graph parameters. However,
the properties will not follow from the expander hash design. Instead, they
will rather depend on each particular construction and each key generation
algorithm and they might be hard to prove or disprove in practice.

Even if they are not good entropy extractors from an information-theoretic
point of view, expander hashes might be used as such in a computational set-
ting, in particular if we assume collision resistance. From cycles or two-paths
in the graph, it is easy to figure out message sets with strictly positive entropy
that produce vertice distributions with a very weak entropy. On the other
hand, it seems hard to produce such message sets without using cycles nor
two-paths. As such objects are assumed to be hard to find by collision resis-
tance, we believe that finding a meaningful extension of the notion of entropy
extraction in the computational setting is an interesting open problem.

4.2.6 Generic attacks against expander and Cayley hashes

In this section, we study the performances of generic attacks against hash
functions when they are applied to expander hash functions. We first discuss
improvements on generic collision and preimage attacks, including the “au-
tomorphisms attack” of [68], subgroup attacks, “meet-in-the-middle” preim-
age attacks, improved multicollision attacks and trapdoor attacks specific to
small-girth expander hashes. We then consider differential cryptanalysis. We
explain that differential cryptanalysis as it is used for other hash functions is
unlikely to be applicable to expander hashes when the girth is large and we
argue that for Cayley hashes, differential cryptanalysis should be replaced
by subgroup attacks.

Let G = (V,E) be a k-regular graph. The automorphism attack described
by Charles et al. [68] assumes that there exists an efficiently computable
automorphism of the graph such that the average distance from a vertex v to
its image f(v) is small. The attacks work as follows. Take a random walk ω
of length µ from the initial point v0; let vµ be the last vertex reached by this
walk. Take a random walk ω′ of length µ′ from vµ; let vµ+µ′ be the last vertex
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reached by this walk. By a brute force attack, search for two paths ωµ from
vµ to f(vµ) and ωµ+µ′ from vµ+µ′ to f(vµ+µ′). The two paths ω||ωµ||f(ω′)
and ω||ω′||ωµ+µ′ solve Problem 4.1 with large probability.

The group structure of Cayley hashes allows for subgroup attacks, a very
powerful collision attack technique. Let us suppose that there exists a sub-
group tower sequence G = G0 ⊃ G1 ⊃ G2 ⊃ ... ⊃ GN = {I} such that
|Gi−1|/|Gi| ≤ B for all i and some computational bound B. By successively
“going from Gi−1 to Gi” it is possible to “reach the identity” faster than by
the birthday attack. This idea was already exploited by Camion against a
scheme proposed by Bosset [59, 53]; we reproduce here a description of the
attack that is due to Jean-Pierre Tillich.

The attack first computes two sets of size about
√
B of random products

of length at most µ1 of the graph generators si. The length µ1 of the prod-
ucts is chosen in such a way that by taking random products of length at
most µ1 in an appropriate way we roughly get

√
B different (random) coset

representatives.

Choosing for each left coset of G1 a representative, each element g of the
first set can be written as g = xg1, where x is one of these representatives
and g1 belongs to G1. This element is stored in a hash table of size

√
B which

is used to store g and its corresponding message at the address lblog2(B)/2(x)
(where lblog2(B)/2(x) is the integer given by the log2(B)/2 least significant bits
of x). Choosing a representative for each right coset of G1, each element g′ of
the second set can be written as g′ = g1x, where x is this time a representative
of a right coset and g1 belongs to G1. If an element g has been stored at the
address lblog2(B)/2(x−1), the product s0,1 := g′g belongs to G1. This operation
is repeated with another choice for the second set to get a second product
s1,1 of the graph generators which belongs to G1.

This trick is iterated from i = 1 to N : two elements s0,i and s1,i of Gi are
obtained by random products of s0,i−1 and s1,i−1 of length at most µi. In the
last step the identity is produced from two elements s0,N−1, s1,N−1 ∈ GN−1.
The collision size is about 2NΠN

i=1µi, the storage cost is of order
√
B and

the computational cost of this attack is about 2N
√
B. The storage cost can

be reduced drastically with a minor increase of the computational cost with
distinguished point techniques. The attack is improved if some of the random
jumps from one subgroup to the next one can be replaced by PPT algorithms.

Expander hashes are also vulnerable to “meet-in-the-middle” and multi-
collision attacks (Section 2.5.3). As pointed out in Section 4.2.1, the expander
hash design may be seen as a Merkle-Damg̊ard transform of a very simple
compression function with message blocks made of only one digit, hence
collisions can be easily combined into multi-collisions. For Cayley hashes, if
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H(m1) = H(m′1) and H(m2) = H(m′2) then not only

H(m1||m2) = H(m1||m′2) = H(m′1||m2) = H(m′1||m′2)

but also

H(m2||m1) = H(m2||m′1) = H(m′2||m1) = H(m′2||m′1).

Moreover, as the compression function is obviously invertible, “meet-in-the-
middle” attacks compute preimages in a time equal to the square root of the
output size.

When the girth is small, the collision resistance of the function is not nec-
essarily broken as the existing small cycles may be hard to find from a given,
randomly chosen starting point v0. In this case, there exists however an in-
creased risk of trapdoor attack if it is possible to find the starting points of
short collisions. Indeed, suppose that starting from v the messages m and m′

have the same hash values. An attacker who is given the ability to choose the
starting point can choose v0 = v. More generally, if the “compression func-
tion” is efficiently invertible (which is usually the case with expander hashes)
the attacker can produce collisions of the form (m1||m||m2,m1||m′||m2) by
computing the hash function “backward” from v according to the digits of
m1, then choosing the last vertex reached as starting point for the hash func-
tion. This attack can be mounted for example against our vectorial and
projective versions of the Zémor-Tillich hash function (Section 5.5).

Differential cryptanalysis is unlikely to work on expander hashes, espe-
cially when the girth is large. We recall from Section 2.5.4 that these attacks
were applied to compression functions that are made of many rounds. As
the structure of expander hashes is very different, the attack should at least
be considerably adapted. In differential cryptanalysis, the attacker searches
for combinations of bit flips in the message whose changes a few rounds later
are compensated with a high probability. It exploits the fact that after a
small number of rounds, the change induced by some bit flips remain local:
it does not influence the whole state of the algorithm. In expander hashes,
the whole state is updated at each bit, and two states may coincide only
after considering a number of rounds equal to the girth. For large girths,
this would render the differential attack unpractical.

For Cayley hashes, differential attacks are best replaced by subgroup at-
tacks. In a sense, the goal of differential attacks is to detect an unexpected
local group structure, a group of differentials that can be combined (“added”)
until forming a collision (“the identity”). In traditional hash functions, these
small group structures are unknown and they might once be discovered and
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lead to very efficient differential attacks. In Cayley hashes, the group struc-
ture is well-known and its study can be managed more easily. In particular,
the absence of small subgroup structures and the girth of the Cayley graph
might help providing quantitative estimations of the hardness of differential
cryptanalysis.

4.2.7 Malleability properties

Malleability is an inherent property of the expander hash design. Roughly, a
hash function is malleable if certain modifications on a message can be related
to modifications on the hash values of the message. Malleability properties
have negative implications for the security of certain hash functions appli-
cations, but on the other hand for Cayley hashes they give rise to efficient
parallel computation algorithms. In this section, we describe the malleabil-
ity properties of expander hashes; we will further discuss their negative and
positive implications in Chapter 8.

Let H be an expander hash function constructed from a k-regular graph,
and let m0...mµ−1 be a message decomposed into k or k−1 digits (depending
on whether the graph used is directed or not). Then trivially, the hash values
of m0...mµ−2 and m0...mµ−1 are neighbors in the graph. As the neighborhood
relation is efficiently computable (otherwise the hash algorithm would not be
efficient), this implies that one hash value can be computed from the other,
a property that is called malleability in other cryptographic settings [94].

If H is a Cayley hash it is even more malleable. Let us first assume that
the starting point is the identity element of the group. For any two messages
m = m0...mµ−1 and m′ = m′0...m

′
µ′−1, we have

H(m||m′) = H(m) ·H(m′)

where · represents the group operation. This malleability property also im-
plies that if H(m) = 1, then m1||m2 collides with m1||m||m2 for any messages
m1,m2. More generally, if the starting point is an arbitrary element g0 of the
group then

H(m||m′) = H(m) · g−1
0 ·H(m′).

These observations concluded on the security aspects of expander hashes;
we now turn to concrete examples.
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4.3 Expander hashes proposals

This section describes the existing instances of expander hash functions. Sec-
tion 4.3.1 summarizes the necessary requirements for expander hash functions
and Sections 4.3.2, 4.3.3, 4.3.4, 4.3.5 and 4.3.6 introduce the Zémor, Zémor-
Tillich, LPS, Morgenstern and Pizer hash functions.

4.3.1 Necessary requirements

From our study of expander graphs and expander hashes in Sections 4.1 and
4.2, it appears that the graphs used in expander hashes should at least satisfy
the following requirements.

• Large expansion: this requirement guarantees that the hash values
of relatively short messages (with respect to the output set size) are
well-distributed in the output set. The relevant parameter here is the
second largest eigenvalue in absolute value determining the spectral
expansion of the graph (see Sections 4.1.2 and 4.1.3).

• Short diameter: this requirement is related to the previous one; a
short diameter implies that all vertices are the output of short messages.

• Large girth: this requirement guarantees that no short collision exists
and it bounds the “distance” between any two colliding messages. A
small girth may however be acceptable if the initial vertex is chosen
randomly. For Cayley hashes, a large girth is definitely required.

• Efficiency: computing the neighbors of any given vertex must be
(very) efficient.

• Collision, preimage and second preimage resistances: Problems
4.1 to 4.5 must be hard.

Cayley hashes seem particularly interesting. Their definition is even
clearer and simpler than general expander hashes. They offer an additional
perspective and connections to long-studied group-theoretical problems. Un-
like general expander hashes, they have a high symmetry which guarantees
that no starting point provides weaker security than the others. Finally,
their malleability property allows parallel hash computation. We note that
only non-Abelian groups may be used in this construction, otherwise trivial
collisions are obtained by permuting the message digits (stated otherwise,
the girth of Abelian Cayley graphs is at most 2).
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Ramanujan graphs are interesting at first sight but they might be easier
to cryptanalyze from the point of view of collision resistance. Ramanujan
graphs are well-studied mathematical objects and a lot is known about the
girths and diameters of existing constructions. By definition, Ramanujan
graphs families are optimal in the spectral expanding sense described in Sec-
tion 4.1.2. However, the Ramanujan property seems to be very demanding;
existing constructions are actually extremal graphs in many senses and have
a lot of algebraic structure. This “extra” mathematical structure is exactly
what has made collision and preimage attacks feasible against LPS and Mor-
genstern hash functions (see Chapter 6). We also remark that the optimal
expansion of Ramanujan graphs is only optimal for undirected graphs and is
easily beaten in directed graphs (see Section 4.4). Using Ramanujan graphs
in the expander hash construction may therefore actually lead to more draw-
backs than advantages.

4.3.2 Zémor’s first proposal

The expander hash design goes back to Zémor [274, 275]. His first scheme
was motivated by another scheme of Godlewski and Camion [113] based upon
error-correcting codes. For Godlewski-Camion hash function, a minimal dis-
tance on any pair of collisions could be inferred from the distance of the code,
and the first goal of Zémor in using graphs with large girths was to derive a
similar bound.

Zémor’s scheme is a Cayley hash built from the group G = SL(2,Fp) that
is the set of 2× 2 matrices over the field Fp with unitary determinant. The
graph generator set is S1 = {A1, B1} where

A1 =

(
1 1
0 1

)
and B1 =

(
1 0
1 1

)
.

The girth of the Cayley graph GG,S1 is larger than logφ1

p
2

where φ1 = 1+
√

5
2

and the diameter is in O(log p) [274]. Computation of a message of length
µ requires µ multiplications by A or B, and each of these multiplications
requires 2 additions modulo p. The scheme is consequently reasonably effi-
cient.

However, Zémor’s hash function has been cryptanalyzed by Tillich and
Zémor [260] using a lifting strategy: the representation problem is lifted
from SL(2,Fp) to SL(2,Z) where it can be easily solved with the Euclidean
algorithm (see Section 5.6.1). The attack exploits the fact that A and B
generate the set SL(2,Z+) in SL(2,Z).
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Two other graph generator sets are proposed in [275] to avoid the afore-
mentioned attack, the sets S2 = {A2, B2} and S3 = {A3, B3} where

A2 = A2
1 =

(
1 2
0 1

)
B2 = B2

1 =

(
1 0
2 1

)
A3 = A1 =

(
1 1
0 1

)
B3 = A1B1 =

(
2 1
1 1

)
The girths of the Cayley graphs GG,S2 and GG,S3 are respectively larger

than logφ2

p
2

and logφ3

p
2

where φ2 = 1 +
√

2 and φ3 = 3+
√

5
2

. The proof
that the diameter of GG,S1 is polynomial in log p can be adapted to GG,S3 . It
seems likely that the same property holds for GG,S2 but further techniques
are needed to prove it [275].

The scheme with GG,S2 requires 2 additions and 2 multiplications by 2
modulo p per bit of message. For GG,S3 , it requires on average 3 additions
modulo p per bit of message. Under a suitable integer representation, multi-
plying by 2 modulo p amounts to a one-bit shift and at most one addition.

To the best of our knowledge, these schemes have not been attacked so
far. Known cryptanalytic results against Zémor-Tillich (see Chapter 5) can
be partially extended to them, but if p is large enough to prevent attacks
of complexity

√
p, and if both p− 1 and p + 1 have large factors to prevent

subgroup attacks, both schemes seem safe today.

4.3.3 Zémor-Tillich hash function

At CRYPTO’94, Tillich and Zémor [258] replaced the group SL(2,Fp) in
Zémor’s construction by the group SL(2,F2n), that is the group of 2 × 2
matrices of unitary determinant in the field K := F2n . The elements of K
are identified to binary polynomials modulo an irreducible binary polynomial
Pn(X) of degree n, that is

K ≈ F2[X]

(Pn(X))
.

The key of this Cayley hash contains the parameter Pn(X), the starting point
is the identity I = ( 1 0

0 1 ) and the graph generator set is S := {A0, A1} where

A0 =

(
X 1
1 0

)
A1 =

(
X X + 1
1 1

)
.

Note that the polynomial Pn(X) is implicit in the definition of the matrices
A0 and A1. The Zémor-Tillich hash value of a bitstring m = m0...mµ−1 is

HZT (Pn(X),m) := Am0 ...Amµ−1 .
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Quisquater has observed that this can also be written in the following very
compact form

HZT (Pn(X),m) :=

µ−1∏
i=0

(
X 1 +miX
1 mi

)
.

The Zémor-Tillich hash function is even more efficient than Zémor’s previ-
ous proposals and it is particularly well-suited for hardware implementations
because its computation uses only arithmetic in a field of characteristic 2.
As(
a b
c d

)
A0 =

(
aX + b a
cX + d a

) (
a b
c d

)
A1 =

(
aX + b aX + b+ a
cX + d cX + d+ c

)
,

a multiplication by A0 requires computing aX + b and cX + d. Under a
suitable representation, computing aX + b amounts to shifting the bits of
a by one bit to the left, xoring by the polynomial if the left-most bit of a
is 1 and xoring by b. In ANSI C and in hardware, the first and last step
may be combined. A multiplication by A1 requires two additional xoring for
computing (aX + b) + a and (cX + d) + c. A trivial implementation of this
algorithm on a 32-bit 3.20GHz Pentium 4 using the GMP C library with a
random irreducible polynomial Pn(X) of degree 1024 gives a throughput of
1.4Mb/s (corresponding to 18286 cycles/byte). Further details and consider-
able improvements on the efficiency of the Zémor-Tillich hash function will
be given in Chapter 9.

Some positive results on the security of this function are given in [258]
(see Section 5.2 for further details). The set of matrices generated by A0 and
A1 is the whole set G = SL(2,F2n). The girth of CG,S is at least n, the degree
of the polynomial used. The diameter of CG,S is unknown but it is expected
to be poly-logarithmic in |p| (for undirected graphs this would follow from
Babai’s conjecture (Conjecture 4.1)). Convergence of random walks to the
uniform distribution is guaranteed.

A few papers have reported attacks against the collision resistance of
the Zémor-Tillich hash function, all of them focusing on solving the repre-
sentation problem [70, 18, 111, 251, 207]. As we will show in Chapter 5,
the function remains however fundamentally unbroken today as soon as the
parameters are large enough and well-chosen.

4.3.4 LPS hash function

More than 15 years after Zémor’s first proposal, the idea of expander hashes
has been independently rediscovered by Charles, Goren and Lauter [68]. Un-
like Zémor and Tillich and Zémor, Charles et al. use undirected graphs and
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solve the issue of trivial backtracking collisions by explicitly forbidding back-
tracking in their construction. Charles et al. have proposed one scheme based
on Pizer’s graphs that is presented in Section 4.3.6 and another one based on
the Ramanujan non-bipartite LPS construction described in the celebrated
paper of Lubotzky, Phillips and Sarnak [167].

The non-bipartite LPS Ramanujan graphs are Cayley graphs defined as
follows. Let p and l be primes, l small and p large, both p and l equal to 1 mod
4, such that l is a quadratic residue modulo p. Let i be an integer such that
i2 ≡ −1 mod p. The construction uses the group G = PSL(2,Fp) which is
usually defined as the quotient group of SL(2,Fp) by the equivalence relation
M ∼ −M . We will prefer the following equivalent definition: PSL(2,Fp) is
the group of 2×2 matrices over Fp with non-zero square determinant, modulo
the equivalence relation M1 ∼ λM2, λ ∈ F∗p. The set S is S = {sj}j=0,...,l,
where

sj =

(
αj + iβj γj + iδj
−γj + iδj αj − iβj

)
, j = 0, ..., l;

and (αj, βj, γj, δj) are all the integer solutions of α2 + β2 + γ2 + δ2 = l, with
α > 0 and β, γ, δ even1. The Cayley graph Xl,p := CG,S is undirected since S
is stable under inversion. Charles et al. suggest to use l = 5 and p a 1024-bit
number.

The choice of LPS graphs was very appealing : they are Ramanujan and
they have a large girth and a small diameter [167]

g(Xl,p) ≥ 4 logl p− logl 4,

D(Xl,p) ≤ 2 logl
p(p− 1)(p+ 1)

2
+ 2 logl 2 + 1.

The Ramanujan property means that all the non-trivial eigenvalues of the

normalized adjacency matrix satisfy |λi| ≤ 2
√
l

l+1
hence λ ≤ 2

√
l

l+1
and the non-

backtracking mixing rate defined in Section 4.1.3 verifies ρ̃ ≤ 1√
l
. The amount

of mixing per bit of message is bounded independently of l as
(

log2
1√
l

)
/ log2 l =

−1
2

= log2
1√
2
.

A trivial implementation of this hash function would require 8 full mul-
tiplications and 4 additions modulo p per l-digit. We have observed in [206]
that the cost per digit may be reduced to a few additions and multipli-
cations by small numbers modulo p, at the cost of doubling the memory
requirements and a few full multiplications in postprocessing. Indeed, using

1Note that in this representation, the determinant of each graph generator sj is l which
by requirement is a quadratic residue modulo p.
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i2 = −1 mod p, the multiplication of a matrix

M =

(
a0 + a1i b0 + b1i
c0 + c1i d0 + d1i

)
by a graph generator sj is

Msj =


(a0αj − a1βj − b0γj − b1δj) (a0γj − a1δj + b0αj + b1βj)

+i(a0βj + a1αj + b0δj − b1γj) +i(a0δj + a1γj − b0βj + b1αj)
(c0αj − c1βj − d0γj − d1δj) (c0γj − c1δj + d0αj + d1βj)

+i(c0βj + c1αj + d0δj − d1γj) +i(c0δj + c1γj − d0βj + d1αj)

 .

As all αj, βj, γj, δj are smaller than
√
l which is small, this product can be

computed with a few additions and multiplications by small numbers modulo
p. In Appendix C, we give some details for l = 5. As α = 1 and exactly
one of β, γ, δ is ±2, the LPS hash function can then be computed with 7.75
additions and 3.45 one-bit shifts per bit of message. A basic implementation
of this algorithm on a 32-bit 3.20GHz Pentium 4 using the GMP C library,
with l = 5 and a random prime p of 1024 bits, gives a bandwidth of 733kb/s
corresponding to 34925 cycles/byte (against 83kb/s for the trivial algorithm
used in [68]).

Collisions for LPS hash function have been found by Tillich and Zémor [259].
We have extended their algorithm to a preimage attack [204]. Both attacks
can be defeated with a small modification in the graph generator set. All
these results are presented in details in Chapter 6 of this thesis. We remark
that our little efficiency trick also applies to the modified algorithm.

4.3.5 Morgenstern hash function

Morgenstern’s Ramanujan graphs [190] generalize LPS graphs from an odd
prime p ≡ 1 mod 4 to any q which is an even power of 2 or a power of another
prime.

Arithmetic in fields of characteristic 2 is typically more efficient and easier
to implement than arithmetic modulo a large prime integer. This has led
us [206] to introduce the Morgenstern hash function, which uses Morgenstern
graphs for small even q.

Morgenstern graphs for even q are defined as follows. Let q be a power of 2
and let ε ∈ Fq such that f(x) := x2+x+ε is irreducible in Fq[x]. Let Pn(X) ∈
Fq[X] be irreducible of even degree n = 2d and let Fqn be represented by
Fq[X]/(Pn(X)). The construction uses the group G = PSL2(Fqn) which
can be thought of as 2 × 2 matrices modulo the equivalence relation M1 ∼
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λM2, λ ∈ F∗qn . Let i ∈ Fqn be a root of f(x). The set S is taken to be
S = {sj}j=0,...,q, where

sj =

(
1 γj + δji

(γj + δji + δj)X 1

)
, j = 0, ..., q;

and γj, δj ∈ Fq are all the q + 1 solutions in Fq for γ2
j + γjδj + δ2

j ε = 1. The
Cayley graphs Γq,n = CG,S are undirected as each sj has order 2.

Like LPS graphs, Morgenstern graphs are Ramanujan, have a large girth,
a small diameter [190]

g(Γq,n) ≥ 2/3 logq[q
n(q2n − 1)],

D(Γq,n) ≤ 2 logq[q
n(q2n − 1)] + 2.

The non-backtracking mixing rate satisfies ρ̃ ≤ 1√
q
; as for LPS graphs this

amounts to 1√
2

per message bit.

Like LPS hash, Morgenstern hash function may be computed with a few
additions. Using i2 + i + ε = 0, the multiplication of a matrix

M =

(
a0 + a1i b0 + b1i
c0 + c1i d0 + d1i

)
by a graph generator sj is

Msj =


(a0 + b0γjX + b0δjX + b1δjεX) (a0γj + a1δjε+ b0)

+i(a1 + b0δjX + b1γjX) +i(a0δj + a1γj + a1δj + b1)
(c0 + d0γjX + d0δjX + d1δjεX) (c0γj + c1δjε+ d0)

+i(c1 + d0δjX + d1γjX) +i(c0δj + c1γj + c1δj + d1)


where multiplications by δj, γj and ε are cheap as these elements belong
to Fq and q is small. Under a suitable representation, multiplication by X
amounts to a few shifts plus a modular reduction which can be performed
with a few XORs. Some details are given in Appendix C for q = 2, in which
case the computation of Morgenstern hash function only requires 4 one-bit
shifts and 12.67 XORs per bit of message: this seems to be more expensive
than for the LPS hash with l = 5, but the XOR operations here are both
easier to implement and more efficient than the additions in LPS hash. A
basic implementation of this algorithm on a 32-bit 3.20GHz Pentium 4 using
the GMP C library, with l = 5 and a random irreducible polynomial Pn(X) of
1024 bits, gives a bandwidth of 613kb/s corresponding to 41762 cycles/byte,
slightly less efficient than LPS hash function with l = 5.

The collision and preimage attacks against LPS hash can be generalized
to the Morgenstern hash function with a little technical work. These attacks
will be developed in Chapter 6, and a variant of Morgenstern hash that is
immune to these attacks will also be proposed.
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4.3.6 Pizer hash function

Among all explicit proposals of expander hashes, the Pizer hash function
proposed by Charles et al. is the only expander hash using a family of graphs
that is not Cayley, the Ramanujan family of Pizer [210]. This hash function
has appeared in [68] and was recently discussed in a Science article [174].

We briefly describe the Pizer graphs used by [68] (assuming knowledge
of basic results on elliptic curves which are recalled in Appendix B.5). Let l
be a small prime and let p be a large prime which is congruent to 1 modulo
12. The vertices of the Pizer graph Πl,p are the set V of all supersingular
elliptic curves over the finite field Fp2 (up to isomorphism). This set has
bp/12c elements that can be labeled by their j-invariants; we write E(j) for
an elliptic curve with j-invariant j. There is an edge from j1 to j2 if and
only if there is an l-isogeny from E(j1) to E(j2). The Pizer graph Πl,p is a
Ramanujan l + 1-regular graph; if p = 1 mod 12 it is undirected and has no
multiple edge [68].

Pizer’s graphs have a small diameter D(Πl,p) ≤ 2 logl
p
12

+ 2 logl 2 + 1 and
as they are Ramanujan, their non-backtracking mixing rate ρ̃ is at most 1√

q

which amounts to 1√
2

per bit of message. Pizer graphs do not have small

girth unless additional restrictions are put on the prime p [210, 68]. This
may question the practicability of the function as it is not clear that there
exists an efficient algorithm generating good p values.

Collision and preimage resistance of this function are implied by (but
not equivalent to) the hardness of some isogeny problems for supersingular
elliptic curves that were previously studied by Galbraith [68, 109]: the best
algorithm today has a time complexity O(p log p).

The computation of a Pizer hash value is less efficient than the compu-
tation of the other expander hashes we have seen so far. To any vertex j of
the graph corresponds a supersingular elliptic curve E := E(j) with Weier-
strass equation Y 2 = X3 + 3kX + 2k where k = j

j−1728
. The l-torsion of this

curve can be computed (for example, using the modular polynomial) and its
subgroups can be ordered according to some convention [69, 68]. To each
of these l + 1 subgroups Hi ⊂ E corresponds a supersingular elliptic curve
Ei = E/Hi and an isogeny E → Ei which can be computed using Vélu’s
formulae [262, 68].

The computation is the fastest when l = 2 but it is still at least 100 times
slower than the computation of a Zémor-Tillich hash value. The 2-torsion is
made of three points plus the point at infinity; if the equation of E is written
in the form Y 2 = X3 +aX+b, the X-coordinate of these three points are the
roots of X3 + aX + b = 0. Moreover, except at the first step of computation,
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one of these roots can easily be computed from the previous step, hence
determining the whole 2-torsion amounts to factor a quadratic. Once the 2-
torsion is known, Vélu’s formulae require a few multiplications in Fp. Charles
et al. evaluate the total cost per bit to 2 log2 p field multiplications which is
much more than for the Zémor-Tillich hash function. Their implementation
in C on a 64-bit AMD Opteron 252 2.6GHz has a throughput of 13.1kb/s
when p has 256 bits, corresponding to 1.588M cycles/byte.

4.4 Revisiting some previous schemes

The previous section has described hash functions that were explicitly con-
structed from expander graphs. In this section, we show that a few other
hash functions can also be interpreted as expander hashes. This simple ob-
servation brings interesting connections between old and new hash function
proposals and it might open new perspectives on these old hash functions.

The easier connection is made with the claw-free permutation hashing
scheme of Goldwasser et al. (Section 3.1.1 and [120, 82]) which is actually
an expander hash. The implicit directed graph Gcff = (V,E) is defined as
follows: V is identified to the domain of the claw-free permutations and the
edges to the action of the permutations on the vertices, as in Figure 3.1.

Some of the relevant parameters of Gcff can be easily computed for exist-
ing constructions of claw-free functions. Let us consider the first scheme pro-
posed by Goldwasser et al., defined by f0(s) = s2 mod n, f1(s) = 4s2 mod n
for s a quadratic residue modulo n where n = p1p2 with primes p1 ≡ 3 mod 8
and p2 ≡ 7 mod 8. If the computation starts from a quadratic residue s0

then the hash value of m is given by H(s0||n,m) = 4ms2|m|
0 mod n.

The graph Gcff is directed and 2-regular. Its girth is only 1 as it has
two loops in the vertices s = 1 and s = 4−1, but reaching one of these two
vertices from a random initial point s0 seems a hard problem: indeed, given
a message m such that 4−1 = 4ms2|m|

0 or 1 = 4ms2|m|
0 we get a solution to

the representation problem in F∗n with generators s0 and 4. The hash value
of a message of length µ belongs to the set < 4 > ·s2µ

0 where < 4 > is the
subgroup of F∗n generated by 4.

We point out that the distribution of random messages of increasing
length µ among this set tends to uniformity faster than in Ramanujan graphs.
Indeed, consider the values H ′(s0||n,m) := H(s0||n,m)s−2µ

0 = 4m mod n on
randomly chosen messages of length µ. Let q be the multiplicative order of
4 modulo n. For any µ, let kµ and rµ be the quotient and the rest of the
division of 2µ by q, that is 2µ = kµq + rµ.
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If m mod q < rµ there are kµ + 1 values in [0, 2µ − 1] that lead to the
result H ′(s0||n,m) = 4m mod n, while if m mod q ≥ rµ there are kµ values in
[0, 2µ − 1] that lead to H ′(s0||n,m) = 4m mod n. Let πµ be the distribution
of H ′(s0||n,m)) in < 4 > for randomly chosen messages m of length µ, and
let u be the uniform distribution in < 4 >. By an easy computation,

||πµ − u||22 =

[
kµ + 1

2µ
− 1

q

]2

rµ +

[
kµ
2µ
− 1

q

]2

(q − rµ)

=

[
(kµ + 1)q − 2µ

2µq

]2

rµ +

[
kµq − 2µ

2µq

]2

(q − rµ)

=
(q − rµ)2rµ + r2

µ(q − rµ)

22µq2
=

(q − rµ)rµ
q

1

22µ

≤ q

4

1

22µ
,

hence the mixing rate of the graph constructed is ρ = λ = 1
2

which is bet-
ter than the optimal non-backtracking mixing rate per bit 1√

2
obtained for

undirected Ramanujan graphs. This moderates the advantage of using Ra-
manujan graphs in expander hashes, especially in comparison with directed
graphs.

Expander hashes and claw-free permutation-based hash functions are sim-
ilar at first sight, but the security arguments for these two designs are very
different. In the claw-free permutation design, the function describing the
edge relation cannot be inverted because of the claw-free property. In the
expander hash design, this function can be inverted efficiently; the hash func-
tion becomes non invertible only after the edge function is iterated many
times. In the expander hash design, much less “cryptographic strength” is
set on each edge relation but on the other hand this allows for more efficient
hashing schemes.

The above analysis for Goldwasser et al.’s hash function may be gener-
alized to a class of graphs GDL = (V,E) which we will call the DL (discrete
logarithm) graphs. Let G be a cyclic group and g be a generator of this
group. To each group element gi ∈ G we associate a vertex vgi ∈ V and we
set an edge from vg1 to vg2 if and only if g2 = g2

1 or g2 = g2
1g. The analysis

of the girth and expanding constant of Gcff in Goldwasser et al.’s scheme
extends to the DL graphs. In particular, the mixing rate of these graphs is
1/2. DL graphs are relevant to the study of hashing schemes like the Shamir
and Tauman scheme [244] that are based on modular exponentiation; they
are strongly related to de Bruijn’s graphs [86].

We have already pointed out that expander hashes can be seen as iterated
hash functions, in particular as the Merkle-Damg̊ard transform of a very
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simple compression function defined by the neighborhood relation. In a sense,
the converse is also true: to any compression function f mapping µ+ λ bits
to λ bits, we can associate a 2µ-regular directed graph with 2λ vertices.
However, for large block sizes the insight offered by this perspective is small.
When the degree is very large, some relevant parameters become harder to
evaluate and the girth even lacks sense: there will typically exist collisions of
length 1, even if these collisions are hard to find. The expander graph design
for hash functions is not really suited to regular graphs with large degrees.

This section concludes our general tour of expander hash functions, their
properties and the various interpretations of these properties. In the following
chapters, we will concentrate on the collision and preimage resistance of
particular instances, starting with the Zémor-Tillich hash function.
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Chapter 5

Cryptanalytic results on ZT
hash

Since its introduction at CRYPTO’94, the Zémor-Tillich hash function (ZT
hash) has kept on appealing Cryptographers by its originality, its elegance,
its simplicity and its security. As any Cayley hash, uniform distribution of
the outputs follows from a graphical interpretation of the hash computation,
and collision resistance is strictly equivalent to an interesting group theoret-
ical problem. The function computation can be parallelized and even the
serial version is quite efficient as it only requires XOR, SHIFT and TEST
operations.

There have been a few publications claiming attacks on the Zémor-Tillich
hash function. However, a closer look at these papers reveals that the scheme
has not been seriously threatened so far. Some of the claimed “attacks” are
unpractical, creating colliding messages of unreasonable length (larger than
2130). Others are trapdoor attacks that can be avoided by fixing the param-
eters in an appropriate way. A last, important class of attacks are subgroup
attacks, damaging for particular parameters in a similar way that the RSA
algorithm can be insecure if the parameters are not correctly generated. The
existence of these papers may have given the function a bad reputation but
it remains fundamentally unbroken today.

This chapter discusses the security of the Zémor-Tillich hash function.
We first describe general results on the group SL(2,F2n) and we give the
positive security results on the function that are obtained from the graph-
theoretical and group-theoretical perspectives. We then focus on preimage
and collision resistance and particularly on the representation problem. We
review all the cryptanalytic results published about the Zémor-Tillich hash
function: we describe, analyze and in many cases improve attacks that had
often only been justified by concrete examples on particular parameters or

111
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on reduced versions.

Subsequently, we identify hard and easy components of the representation
problem and we deduce new collision and preimage subgroup attacks against
the Zémor-Tillich hash function. Unlike previous ones, our attacks are generic
in the sense that they work for any parameters of the function. With a time
complexity close to 2n/2, our attacks beat by far the birthday bound and
ideal preimage complexities which are 23n/2 and 23n for the Zémor-Tillich
hash function. They are practical up to n ≈ 120, 130 that is very close to the
parameter’s lower bound n ≥ 130 initially proposed by Zémor and Tillich.
As the attacks include a birthday search in a reduced set of size 2n they do
not invalidate the scheme but rather suggest that the initial parameters were
too small.

Our collision attacks suggest that an output of n bits should be extracted
from the original 3n bits of Zémor-Tillich. We consequently introduce the
vectorial and projective variants of Zémor-Tillich that have output sizes re-
spectively 2n and n bits. We show that the original function is collision
resistant if and only if its vectorial variant and (for small n) if and only if
its projective variant are collision resistant. We then discuss further crypt-
analytic ideas and we introduce a few problems the solution of which would
break the collision resistance of ZT hash.

This chapter is the first survey of attacks against the Zémor-Tillich hash
function and it also introduces significant new ideas. Parts of the results
presented were obtained with Jean-Jacques Quisquater, Jean-Pierre Tillich
and Gilles Zémor [207] and an early version of this chapter has benefited
from a careful review and improvements by Jean-Pierre Tillich. The chapter
is organized as follows. Section 5.1 presents general results that will be
useful for the next sections. Section 5.2 gives positive security results for
ZT hash. Section 5.3 discusses previous attacks, Section 5.4 introduces our
new collision and preimage attacks and Section 5.5 describes the vectorial
and projective variants of Zémor-Tillich. Section 5.6 presents further and
promising approaches and Section 5.7 concludes the chapter.

5.1 On the group SL(2,F2n) and the genera-

tors A0 and A1

Let F2n := F2[X]/(Pn(X)) where Pn(X) is an irreducible polynomial of de-
gree n. We recall from Section 4.3.3 that the Zémor-Tillich hash function is
the Cayley hash constructed from the group G := SL(2,F2n) and the graph
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generators S := {A0, A1} where

A0 =

(
X 1
1 0

)
A1 =

(
X X + 1
1 1

)
.

In this section, we give several simple facts about the group G and the
graph generators A0 and A1 that are useful to understand the attacks pre-
sented in the rest of this chapter together with their limitations.

5.1.1 Subgroups of SL(2,F2n)

The subgroups of G := SL(2,F2n) are known since Dickson.

Proposition 5.1 (after [134]) The group G = SL(2,F2n) has order |G| :=
2n(2n − 1)(2n + 1). All its proper subgroups are:

• for 1 ≤ n′ ≤ n, Abelian groups of order 2n
′
;

• cyclic groups of order dividing 2n ± 1;

• dihedral groups of order 2 times a divisor of 2n ± 1;

• the alternating groups A4 and A5 if n is even;

• for 1 ≤ n′ ≤ n, semidirect products of Abelian groups of order 2n
′

with
cyclic groups of order t where t|2n′ − 1 and t|2n − 1;

• groups SL(2,F2n′ ) for n′|n

• groups PGL(2,F2n
′ ) for 2n′|n.

We see that the number and the sizes of the subgroup of SL(2,F2n)
highly depend on the parameter n. Subgroups and elements of small order
are particularly interesting for Zémor-Tillich cryptanalysts. The group G
always contains elements of order 2 and 3, a property used in the trapdoor
attack of Section 5.3.3. Elements of order 2 or 3 can be recognized from their
traces.

Proposition 5.2 (after [251]) A matrix M = ( a bc d ) ∈ SL(2,F2n) has order
2 if and only if t := a+ d = 0. It has order 3 if and only if t = 1.
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Proof: For any matrix M = ( a bc d ), we have PM(M) = 0 where PM(λ) =
λ2 + (a + d)λ + (ad + bc) = λ2 + tλ + 1 is the characteristic polynomial of
M [160]. Hence we have

ord(M) = 2 ⇔ I 6= M and I = M2 = tM + I

⇔ I 6= M and t = 0,

ord(M) = 3 ⇔ I 6= M and I = M3 = tM2 +M = (t2 + 1)M + I

⇔ I 6= M and t = 1.

�

When n is composite, the trace of a matrix M ∈ G also determines
whether M belongs to the subgroup SL(2,F2n′ ) or a conjugate subgroup.
Let us write n′ for a factor of n.

Proposition 5.3 [251]

• Let n′|n and M ∈ SL(2,F2n). Then M is similar to a matrix M ′ ∈
SL(2,F2n′ ) if and only if Trace(M) ∈ F2n′ .

• For M ∈ SL(2,F2n) with Trace(M) ∈ F2n
′ we have ord(M) ≤ 2n

′
+ 1.

Some subgroups of SL(2,F2n) exist independently of the value of n: the
diagonal subgroup, the triangular subgroups, or the subgroups of matrices
with a given eigenvector. Proposition 5.4 describes these subgroups and
decomposes the group operation inside these subgroups into an Abelian and
a non-Abelian parts.

Proposition 5.4

1. Let D be the subgroup of unimodular diagonal matrices with elements
in F∗2n. Then D = {Da := ( a a−1 ) ,∀a ∈ F∗2n}. Moreover, for all
Da1 , Da2 ∈ D, we have Da1Da2 = Da2Da1 = Da1a2.

2. Let T up be the subgroup of unimodular upper triangular matrices with
elements in F2n. Then T up = {Ta,b :=

(
a b
a−1

)
,∀a ∈ F∗2n , b ∈ F2n}.

Moreover, for all Ta1,b1 , Ta2,b2 ∈ T up we have Ta1,b1Ta2,b2 = T(a1a2),(a1b2+b1a
−1
2 )

and for all b ∈ F2n we have T 2
1,b = I.

3. For any vector v = ( a b ) ∈ F1×2
2n , let Lv be the subgroup of uni-

modular matrices with elements in F2n that have v as a left eigen-
vector. Then Lv = {Mλ,α,β := λI + ( ba ) ( α β ) ,∀λ ∈ F∗2n , α, β ∈
F2n s.t. det(Mλ,α,β) = λ2 + λ(αb+ aβ) = 1}. In particular if M1,α,β ∈
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Lv then ( α β ) = δ ( a b ) for some δ ∈ F2n.Moreover, for all Mλ1,α1,β1 ,Mλ2,α2,β2 ∈
V lv, we have Mλ1,α1,β1Mλ2,α2,β2 = M(λ1λ2),(α1+α2+α1α2b)+aα2β1,(β1+β2+β1β2a)+bα1β2

and for all δ ∈ F2n we have M2
1,δa,δb = I.

Proof: Most of the proposition is easy; we give the proof that M ∈ Lv
can be written as λI + ( ba ) ( α β ) for some λ ∈ F∗2n , α, β ∈ F2n . Let v =
( a b ) ∈ F1×2

2n and M ∈ Lv. Let c, d ∈ F2n such that ad+bc = 1. We can write
( a bc d )M =

(
a b
c′ d′

)
λ for some λ ∈ F∗2n and c′, d′ ∈ F2n such that ad′+bc′ = λ−1.

Then M = λ ( d bc a )
(
a b
c′ d′

)
= λ

(
1+b(c+c′) b(d+d′)
a(c+c′) 1+a(d+d′)

)
= λI + ( ba ) ( α β ) where

α := λ(c+ c′) and β := λ(d+ d′). �

Similar results can be derived for the subgroup of lower triangular matri-
ces and the subgroups of matrices with a given right eigenvector. Proposition
5.4 will be used to prove Proposition 5.10, which in turn inspires our attacks
of Sections 5.4.

5.1.2 Homomorphism from SL(2,F2[X])

Let Ã0 and Ã1 be the matrices A0 and A1 viewed as elements of SL(2,F2[X])

rather than as elements of SL(2,F2n). The matrices Ã0 and Ã1 generate a
subset Ω of SL(2,F2[X])

Ω = 〈Ã0, Ã1〉 :=

{
M̃ =

∏
i

M̃i s.t. M̃i ∈
{
Ã0, Ã1

}}
and there is a natural homomorphism ϕ : Ω → SL(2,F2n) defined by the
“reduction modulo Pn(X)”.

Proposition 5.5 [251] Each element M̃ ∈ Ω has a unique factorization as

a product of Ã0 and Ã1. Moreover, M̃ has the form(
aµ(X) bµ−1(X)
cµ−1(X) dµ−2(X)

)
or

(
aµ(X) bµ(X)
cµ−1(X) dµ−1(X)

)
depending on whether the last right factor is Ã0 or Ã1, where µ is the number
of factors (the subscript indices are the degrees of the polynomials).

Proof: For µ = 1 the proposition is trivial. Assuming it is true for some
value µ, proving it is also true for µ + 1 amounts to computing the four
products (

aµ bµ−1

cµ−1 dµ−2

)
(X 1

1 0 )
(

aµ bµ−1

cµ−1 dµ−2

)
(X X+1

1 1 )(
aµ bµ
cµ−1 dµ−1

)
(X 1

1 0 )
(

aµ bµ
cµ−1 dµ−1

)
(X X+1

1 1 )
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and checking that the entries of the resulting matrices have the right degrees.
�

Factoring a matrix M̃ ∈ Ω is easy: the right last factor Ãmµ of M̃ is given

by Proposition 5.5, then the second right last factor of M̃ is the right last
factor of M̃Ã−1

mµ , and so on.

The homomorphism ϕ cannot be inverted today, as we cannot characterize
the set Ω by a few equations, nor characterize any set Ω′ with Ω ⊂ Ω′ ⊂
SL(2,F2[X]) and |Ω′|/|Ω| small. For example, if we define

Eµ :=
{
M =

(
ã(X) b̃(X)

c̃(X) d̃(X)

)
∈ SL(2,F2[X]) s.t. deg ã, b̃, c̃, d̃ ≤ µ

}
then [258]

|Ω ∩ Eµ|
|Eµ|

= O(2−µ).

As we will see in Section 5.6.1 and Chapter 6, the situation differs greatly in
Zémor’s first proposal and in LPS and Morgenstern hash functions, allowing
lifting attacks [260, 259, 205] that could not be extended to the Zémor-Tillich
hash function.

5.1.3 On powers of elements

Although the set Ω is badly understood, one of its subset such as
{
Ãµ0 , µ ∈ Z+

}
has been well characterized, as can be the set

{
Ãµ, µ ∈ Z+

}
for any matrix

A ∈ SL(2,F2[X]).

Define the polynomials fi(X) as f−1(X) = 1, f0(X) = 0, f1(X) = 1 and
fi+2(X) = Xfi+1(X) + fi(X) for i ≥ 1. By induction [18],

Ãµ0(X) =
(
fµ+1(X) fµ(X)
fµ(X) fµ−1(X)

)
. (5.1)

Similarly, as Ã−1
0 (X)Ã1(X)Ã0(X) = (X+1 1

1 0 ) = Ã0(X + 1), we have

Ã1(X)µ = Ã0(X)
(
fµ+1(X+1) fµ(X+1)
fµ(X+1) fµ−1(X+1)

)
Ã−1

0 (X). (5.2)

The polynomials fi(X) have interesting properties pointed out by [18].

Let λ0, λ
−1
0 be the eigenvalues of Ã0. Then fµ(X) = 1

X
Tr
(
Ãµ0(X)

)
=

1
X

(
λµ0 + λ−µ0

)
and in particular f2µ(X) = X2µ−1

. If µ > 0 is even then
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fµ(X) = Xgµ(X)2 for some polynomial gµ(X) ∈ F2[X] and if µ > 0 is odd
then fµ(X) = hµ(X)2 for some polynomial hµ(X) ∈ F2[X].

The following proposition extends Equations (5.1) and (5.2).

Proposition 5.6 Let Ã = ( a bc d ) ∈ SL(2,F2[X]) and let t := a + d. Then

Ãµ = fµ−1(t)I+fµ(t)Ã. In particular, if Ã = ( t 1
1 0 ) then Ãk =

(
fµ+1(t) fµ(t)
fµ(t) fµ−1(t)

)
.

Proof: For µ = 0, 1 the result is trivial. It is true for µ = 2 as Ã2 =(
a2+bc ab+bd
ac+cd bc+d2

)
= ( 1 0

0 1 )+t ( a bc d ) because ad+bc = 1. Now suppose it is true for

any integer ≤ µ. Then Ãk+1 = Ã(fµ−1(t)I + fµ(t)Ã) = fµ−1(t)Ã+ fµ(t)Ã2 =

fµ(t)I+ (fµ−1(t) + tfµ(t))Ã = fµ(t)I+ fµ+1(t)Ã so we are done with the first
part of the proposition. The second part follows immediately. �

A different characterization can be obtained from the Jordan decomposi-
tions of the matrices. Let λ, λ′ be the eigenvalues of Ã ∈ Ω ⊂ SL(2,F2[X]).

Note that λ′ = λ−1 6= λ as λλ′ = det(Ã) = 1 and λ+λ′ = Tr(Ã) = a+d where

deg(a) 6= deg(d) according to Proposition 5.5. Consequently, Ã decomposes

as Ã = S
(
λ 0
0 λ−1

)
S−1 with S =

(
b b

a+λ a+λ−1

)
and S−1 = b−1(a+d)−1

(
a+λ−1 b
a+λ b

)
.

Finally, the powers of Ã can be written as

Ãµ = S
(
λµ 0
0 λ−µ

)
S−1. (5.3)

We conclude this section with an observation of Geiselmann that the
powers of A0 and A1 can be embedded into finite fields [111].

Proposition 5.7 [111] Let A = ( t 1
1 0 ) ∈ SL(2,F2n) and its characteristic

polynomial PA(λ) := λ2 + tλ+ 1 ∈ F2n [λ].

• If PA(λ) is irreducible, then we have isomorphisms F(2n)2 ' F2n/(PA(λ)) '
F2n .I+F2n .A. Moreover, a matrix M ∈ F2×2

2n is a power of A if and only
if M = αI + βA for some α, β ∈ F2n, det(M) = 1 and M ord(A) = I.

• If PA(λ) factorizes into PA(λ) = (λ + λ0)(λ + λ−1
0 ), then the relation

∼ defined by α1I + β1A ∼ α2I + β2A ⇔ α1 + β1λ0 = α2 + β2λ0 is an
equivalence relation.
The application ϕ : αI + βA → α + βλ0 where αI + βA is the equiv-
alence class of αI + βA, is a homomorphism. A matrix M ∈ F2×2

2n

is a power of A if and only if M = αI + βA for some α, β ∈ F2n,
det(M) = 1 and (α + βλ0)ord(A) = 1.
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Proposition 5.7 is used in Geiselmann’s attack (Section 5.3.4) to char-
acterize the powers of A0 = (X 1

1 0 ) but also A1 = (X X+1
1 1 ). Indeed, the

proposition applies to A′0 := (X+1 1
1 0 ) = A−1

0 A1A0 and hence it extends to A1

because

• (A′0)µ = αI + βA′0 ⇔ Aµ1 = A0(αI + βA′0)A−1
0 = αI + βA1,

• det(αI + βA′0) = det(αI + βA1)

• (αI + βA′0)ord(A′0) = (αI + βA1)ord(A1) and (α + βλ0)ord(A′0) = (λ0(α +
βλ0)λ−1

0 )ord(A1).

5.2 Positive security results on ZT hash

In this section, we give the security properties of ZT hash that can be derived
from the graph-theoretical and group-theoretical perspectives developed in
Chapter 5. For G := SL(2,F2n) and S := {A0, A1}, the Cayley graph
ZT := CG,S will be called the Zémor-Tillich graph. An example of such a
graph is represented in Figure 5.1.

ZT is a strongly connected graph: the set of matrices generated by A0 and
A1 is the whole group G. The proof in [258] considers all possible subgroups
of G (see Proposition 5.1) and shows that none of these subgroups contains
both A0 and A1.

The girth of ZT is at least n [258]. Indeed, let Ã0 and Ã1 be the matrices
A0 and A1 viewed as elements of SL(2,F2[X]) rather than as elements of

SL(2,F2n). Proposition 5.5 implies that the set Ω :=< Ã0, Ã1 > is free, hence

ifm0...mµ−1 6= m′0...m
′
µ′−1 the corresponding products M̃ := Ãm0 ...Ãmµ−1 and

M̃ ′ := Ãm′0 ...Ãm′µ′−1
cannot be equal in SL(2,F2[X]). Consequently, if two

products M := Am0 ...Amµ−1 and M ′ := Am′0 ...Am′µ′−1
are equal in SL(2,F2n),

there must be some reduction modulo Pn(X) happening, hence at least one of

M̃ and M̃ ′ has at least one of its entries of degree at least n. By Proposition
5.5, this implies that max(µ, µ′) ≥ n which by definition shows that the girth
is at least n.

The diameter of ZT is expected to be small although this has not been
proved. If Babai’s conjecture (Conjecture 4.1) is true even for non symmetric
generating sets, the diameter of ZT is a polynomial function of the degree
n. Of course, a constructive proof of this conjecture would certainly break
any Cayley hash constructed from non-Abelian simple linear groups but at
the present even non-constructive proofs seem out of reach in the general
case [129]. In particular, Zémor’s proof for his first function [274, 275] and
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Figure 5.1: ZT graph for parameter P2(X) = X3+X2+1. (Due to a symme-
try in the eigenvectors of the graph, many couple of vertices are superposed
in this graph representation, resulting that many edges look undirected.)

Helfgott’s proof for undirected Cayley graphs of SL(2,Fp) [129] are both
non-constructive.

No good bound is known on the expanding constant nor the second eigen-
value of ZT but the distribution of hash values tends to equidistribution
when the message length tends to infinity. Using Proposition 5.4, it is pos-
sible to prove that the greatest common multiple of all the cycle lengths of
ZT is 1 [258], which by Theorem 4.2 implies that λ(ZT ) < 1.
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5.3 Previous results on ZT hash

We now review previous cryptanalytic results on the Zémor-Tillich hash func-
tion. The function can be inverted for short messages (Section 5.3.1). Public
or secret collisions can be forced by the adversary if he can choose the param-
eter Pn(X) (Sections 5.3.2 and 5.3.3). Collisions, although very large, can
be computed by solving discrete logarithm problems (Section 5.3.4). Finally,
the subgroup structure can be exploited to produce collisions with more or
less success depending on the parameters (Sections 5.3.5 and 5.3.6). The
“attacks” presented here are known [70, 111, 18, 251] but we have cleaned
their exposition, analyzed their efficiency, discussed their practical impact
and in many cases extended them.

5.3.1 Invertibility for short messages

The invertibility for short messages was first observed in [251]. If the mes-
sage size µ is smaller than n, then according to Proposition 5.5 all the entries
of the hash are polynomials with degree smaller than n. Consequently, no
polynomial reduction is applied and the hash output can be seen as an ele-
ment of Ω ⊂ SL(2,F2[X]) (see Section 5.1.2). As factorization is easy in this
set, the hash function can be inverted. Invertibility on short messages does
not contradict preimage resistance for large message sets but it discards the
function for certain applications.

In particular, suppose that a Zémor-Tillich hash function of size n = 170
is used to hash an ECDLP key K of µ = 160 bits, and the resulting value
HZT (K) is intercepted by some adversary: then the adversary can recover
K as above. This attack can be extended to larger keys of size µ slightly
larger than n: indeed, the adversary may guess the µ− n+ 1 last bits of the
key and recover the remaining bits as before (discarding the keys when the
matrices do not have the correct form). It is reasonable to expect this attack
to be feasible today if µ < n + 60, and prudent to take as security margin
µ > n+ 120.

5.3.2 Charnes-Pieprzyck attack

Charnes and Pieprzyck [70] were the first to identify an attack against the
Zémor-Tillich hash function. This attack was better analyzed by Abdukha-
likov et Kim [18]; we follow mainly their exposition.

Let fi(X) be the polynomials defined in Section 5.1.3. The attacker
may choose Pn(X) such that Pn(X)|fµ(X) for some small µ. According to
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Equation (5.1),

Ã0(X)µ =
(
fµ+1(X) fµ(X)
fµ(X) fµ−1(X)

)
and as det

(
Ã0

µ
)

= det
(
Ã0

)µ
= fµ+1(X)fµ−1(X) + fµ(X)2 = 1, the prop-

erty Pn(X)|fµ(X) implies fµ+1(X) = fµ−1(X) = 1 mod Pn(X). Finally, we
obtain the equality

Aµ0 = I mod Pn(X)

which gives a collision of size µ. Similarly from Equation (5.2), if the attacker
chooses Pn(X) such that it divides fµ′(X + 1) for some small µ′ then there

is a collision of size µ′ given by Aµ
′

1 = I mod Pn(X).

Charnes-Pieprzyck’s attack can be extended as follows. From any short
message m of size µ1, let Ã(X) = ( a bc d ) be its hash value viewed as a matrix
in SL(2,F2[X]), and let Pn(X) be such that Pn(X)|fµ2(a+d) for some small

µ2. As Ã and Ã′ := ( a+d 1
1 0 ) have the same characteristic polynomial, we can

write Ã = SÃ′S−1 for some S. Applying Proposition 5.6,

Ãµ2 = (SÃ′S−1)µ2 = S(Ã′)µ2S−1 = SS−1 = I mod Pn(X),

that is the message m repeated µ2 times produces a message of size µ1µ2

colliding with the void message.

In Charnes-Pieprzyck’s attack, a collision of the form (mµ, void) for m
equal to 0 or 1 is produced, while in our extension m can be any message.
In Charnes-Pieprzyck’s attack, the collision could hardly be kept secret as
anybody can check the orders of A0 and A1. In our extension, the collision
remains secret and hence may be used as a trapdoor, that is as a secret
information useful to perform some computation otherwise infeasible, in this
case to produce collisions (see Section 3.1.1).

These attacks point out undesired properties of the Zémor-Tillich hash
function but their practical impact is weak as they can easily be avoided. If
the polynomial is fixed randomly, let us say by some authority, the probabil-
ity that Pn(X) divides fµ(X) or fµ(X + 1) for small µ is clearly very small
(bounds are given by Abdukhalikov et Kim [18]) so Charnes-Pieprzyck’s at-
tack will be defeated. Our extension will also be defeated: the condition
Pn(X) divides fµ(t(X)) for some t(X) may seem easier to satisfy if t(X) is
not fixed, but then finding a message hashing to a matrix in Ω with a given
trace t(X) seems to be a hard problem.

5.3.3 Steinwandt et al.’s trapdoor attack

In the trapdoor attack of [251], the polynomial Pn(X) is chosen from a mes-
sage m such that m||m or m||m||m collides with the void message. For a
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given message m = m0...mµ−1 let

Ã = ( a bc d ) := Ãm0Ãm1 ...Ãmµ−1 ,

i.e., where the hash value is computed in the ring F2[X] rather than the field
F2n . If Pn(X) is one of the irreducible factors of a+ d (resp. a+ d+ 1) then
according to Proposition 5.2 the message m||m (resp. m||m||m) collides with
the void message. As an example, [251] gives a polynomial of degree 167 such
that the message “This is the way a trapdoor can look like. ” repeated twice
collides with the the void message.

When n has small factors the attack can be extended to H(m) of small
order different of 2 or 3. Indeed, Proposition 5.3 implies that any matrix
A = ( a bc d ) ∈ SL(2,F2n) with trace t ∈ F2n′ ⊂ F2n has order smaller than
2n
′
+ 1. Consequently, if Pn(X) is a factor of a + d + t then the message m

repeated ord(A) ≤ 2n
′
+ 1 times collides with the void message.

For a given message m, the basic attack succeeds if and only if there
exists an irreducible factor of a + d or of a + d + t with degree 130 ≤ n ≤
170. The number of irreducible polynomials of degree n over F2 is given
by N(n) = 1

n

∑
d|n µ

(
n
d

)
2d where µ is the Moebius function; from numerical

calculations the first terms of this sequence may be approximated by N(n) ≈
2n−6 [269]. The probability that a given polynomial of degree n divides a
random polynomial of large degree is 1/2n; the probability that there exists
one polynomial of degree n dividing a random polynomial of large degree

is 1 −
(
1− 1

2n

)2n−6

≈ 1 − e−2−6 ≈ 0.0145. Finally, the probability that
a random polynomial of large degree has an irreducible factor with degree
130 ≤ n ≤ 170 is about 1− (1− 0.0145)40 ≈ 0.4647.

The attack will fail for both a + d and a + d + 1 only for about 29% of
messages. In applications where ASCII coded English messages are hashed,
the adversary may add blank characters to the message or replace a word
with a synonym until he finds a trapdoor. If n is composite, more polynomials
a + d + t may be considered so the probability of success increases and less
trials are needed.

As the attack produces collisions on most arbitrary messages, its effects
may be devastating. Consider the case of a contract concluded with an
electronic protocol using the hash-and-sign paradigm (Section 2.6.2) and the
Zémor-Tillich hash function. Suppose Bob had the opportunity to choose
Pn(X) such that the message “I also agree to pay Alice 10,000 dollars the
following day. ” collides with the void message. Bob can then sign the
message I Bob agree on paying 10,000 dollars to Alice on date 07/23/2009.
I also agree to pay Alice 10,000 dollars on the following day. I also agree to
pay Alice 10,000 dollars on the following day. ” and later claim that he had
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actually only signed the first sentence: the signature scheme would not be
undeniable.

Despite of this scenario and many similar ones, we argue that the trapdoor
attack will have little or no practical impact if the polynomial is fixed once
and for all by some authority. Indeed, even if the authority had chosen
a parameter with a trapdoor, it could use it only to create collisions on
certain pre-fixed messages. In particular, the trapdoor would be of no help for
inverting the hash function nor for finding second preimages. Moreover, any
use of the collision would reveal it, so not only the attack could be performed
only once but the authority would immediately look very suspicious, as it
would be very unlikely that this collision was generated honestly. Finally,
we point out that some choices of parameters discard trapdoor attacks even
by the authority, for example if Pn(X) is the smallest polynomial of some
degree n or if it depends on the binary representation of a universal constant
like π.

5.3.4 Geiselmann’s “attack”

Geiselmann proposed an approach for constructing collisions valid for any
choice of the parameter n [111]. The “attack” requires solving discrete loga-
rithms in the field F2n or F22n , which is possible for the values 130 ≤ n ≤ 170
proposed by Zémor and Tillich. Its main drawback is to produce very long
collisions (actually larger than the size of trivial collisions A

ord(A0)
0 = I) of

the very special form Ae10 A
e2
1 A

e3
0 A

e4
1 = M for some matrix M with a known

short factorization.

The main idea is to use the isomorphisms ϕAi of Proposition 5.7 that
embeds matrix powers into a finite field K where K is either F2n or F22n .
The attack has two main steps: the attacker first finds matrices A

ej
i satisfying

Ae10 A
e2
1 A

e3
0 A

e4
1 = M , then he recovers the exponents as the discrete logarithms

of ϕAi(A
ej
i ) in the bases ϕAi(Ai).

The attack goes as follows. A matrix M is generated as a random short
product of A0 and A1. A matrix equation of the form (α1I + β1A0)(α2I +
β2A1)(α3I + β3A0)(α4I + β4A1) = M is considered which gives 4 polyno-
mial equations with 8 unknowns αi, βi ∈ F2n , i = 1...4. After adding the 4
equations det(αjI + βjAi) = 1 the system is solved. In general it has so-
lutions; otherwise another matrix M is generated. The conditions with the
orders in Proposition 5.7 are checked on αjI + βjAi. If they are not ful-
filled, another matrix M is selected, otherwise according to Proposition 5.7,
αjI+βjAi = A

ej
i for some ej. The exponents ej are recovered as the discrete

logarithms of the matrices α1I+β1A0, α2I+β2A1, etc., regarded as elements
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of F2n or F22n . As Zémor-Tillich prescribed parameters were 130 ≤ n ≤ 170,
these discrete logarithms can be computed efficiently.

We now modify Geiselmann’s approach to make it more explicit. Let
λ0 ∈ K0 be a root of λ2+Xλ+1 = 0, the other root being λ′0 = λ−1

0 = X+λ0,
and let λ1 ∈ K1 be a root of λ2 + (X + 1)λ + 1 = 0, the other root being
λ′1 = λ−1

1 = X + 1 + λ1. The fields K0 and K1 are F2n or F22n depending
on the irreducibility of the corresponding polynomials in F2n . We can write

A0 = S0D0S
−1
0 where D0 =

(
λ0

λ−1
0

)
, S0 =

(
1 1
λ′0 λ0

)
, S−1

0 = X−1
(
λ0 1
λ′0 1

)
and A1 = S1D1S

−1
1 where D1 =

(
λ1

λ−1
1

)
, S1 =

(
1+λ1 1+λ′1

1 1

)
, S−1

1 = (X +

1)−1
(

1 1+λ′1
1 1+λ1

)
.

Now Ae10 A
e2
1 A

e3
0 A

e4
1 = S0D

e1
0 S
−1
0 S1D

e2
1 S
−1
1 S0D

e3
0 S
−1
0 S1D

e4
1 S
−1
1 so the ma-

trix equation Ae10 A
e2
1 A

e3
0 A

e4
1 = M corresponds to a system of four equations

in the variables x1 := λe10 , x2 := λe21 , x3 := λe30 and x4 := λe41 . If the system
has no solution, larger matrix products may be considered to increase the
number of variables while keeping the number of equations constant. After
a solution for the variables xi is found, the exponents ei are recovered by
computing discrete logarithms in the fields K0 and K1.

In both Geiselmann’s abstract approach and our concrete variant, alter-
native products like Ae10 A1A

e2
0 A1A

e3
0 A1A

e4
0 A1 may also be considered, poten-

tially giving systems that are easier to solve.
Neither Geiselmann’s approach nor our variant can really be considered

as practical attacks as the expected size of the collisions produced is very
large, even larger than the expected size of trivial collisions like A

ord(A0)
0 = I.

Indeed, nothing prevents the exponents ei from being of full size that is the
size of the fields Ki.

5.3.5 Steinwandt et al. subgroup attacks

Depending on the parameters, the group G = SL(2,F2n) has more or less
subgroups that can be exploited more or less easily to find collisions.

The attack proposed by Steinwandt et al. [251] focuses on composite num-
bers n, let us say n = n1n2, and polynomials Pn(X) admitting a functional
decomposition Pn(X) = Pn1(Pn2(X)). The attack exhaustively tests all bit
sequences of length n2 until one is found that hashes to a matrix M with
trace Y := Pn2(X). The bit sequence is repeated ord(M) times to produce
a collision.

As n2 < n no polynomial reduction is done and the matrices have the
form given by Proposition 5.5, hence the trace has degree n2. There are 2n2

polynomials of degree n2 and also 2n2 bit sequences so this step will a priori
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succeed with a good (non negligible) probability. Moreover as Pn1(Y ) =
0 mod Pn(X), the trace Y belongs to F2n1 ⊂ F2n so according to Proposition
5.3, the matrix M has order smaller than 2n1 + 1. The total size of the
collision is n2.ord(M) ≤ n2(2n1 +1) and the computational cost of the attack
is about 2n2 . As an example for n = 147 and Pn(X) = X147 + X98 + 1 =
(x49)3 + (X49)2 + 1, the attacker may choose n1 = 3 and n2 = 49 to produce
collisions of size smaller than 441 bits in time 249.

When n = n1n2 but Pn(X) does not admit a functional decomposi-
tion Pn(X) = Pn1(Pn2(X)), the subgroup attack might still be possible but
it seems much harder. In the beginning of the attack we need a matrix
M = ( a bc d ) with trace in F2n1 . There are about 22n+n1 such matrices (about
2n choices for a and b, then about 2n1 choices for d and one choice for c)
while there are about 23n matrices in SL(2,F2n), so the probability to reach
a matrix of the correct form by random methods is about 1

2n−n1
. The com-

putational cost of the attack is 2n−n1 and the collision size is bounded by
(n − n1)2n1 . In particular, choosing n1 as the largest proper divisor of n
accelerates the attack but produces larger collisions.

The attack is less efficient when the polynomial is not decomposable be-
cause there is no more guaranty that any element of degree smaller than
n2 belongs to F2n . The probability for such an event to happen on random
polynomials is a priori quite weak. Curiously, Steinwandt et al. give an ex-
ample with n = 140 and n2 = 10, some non-decomposable polynomial and
a bit sequence of length 16 hashing to a matrix whose trace belongs to F210 .
The authors do not give more details on how the polynomial was chosen or
the bit sequence found. According to our analysis, the probability that a
bit sequence of size 16 hashes to an element with trace in F210 is very small,
about 216214−140 = 2−110. We suspect that this collision was created with the
trapdoor attack (Section 5.3.5) but presented with the subgroup attack to
illustrate the fact that in some cases subgroup attacks are possible even with
non-decomposable polynomials.

5.3.6 Other subgroup attacks

The previous section showed particularly efficient subgroup attacks for com-
posite n; when n is prime, Camion’s attack (Section 4.2.6) and improvements
upon it also give some satisfactory result, although more limited.

Camion’s attack requires a subgroup tower sequence G = G0 ⊃ G1 ⊃
G2 ⊃ ... ⊃ GN = {I} and its complexity is about

√
B where |Gi−1|/|Gi| ≤ B

for all i. According to Proposition 5.1, it seems natural to choose for GN one
of the largest Abelian subgroups of SL(2,F2n) that has order 2n±1. Abelian
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subgroups C2n+1 of order 2n + 1 leads to the sequence G ⊃ C2n+1 ⊃ {I} for
which B ≈ 22n while Abelian subgroups of order 2n − 1 are more interesting
since they lead to a sequence G ⊃ G1 ⊃ G2 ⊃ {I} with B ≈ 2n.

Steinwandt et al. recommend choosing n such that both 2n+1 and 2n−1
have large factors “in order to make the search for elements of small order not
unnecessarily easy”[251]. At the light of the above analysis, this condition is
not necessary: the complexity of subgroup attacks is determined equally or
more by the difficulty to “reach G1 from G” than by the difficulty to “reach
the identity from GN”. Unless a significantly new idea appears to reach the
first subgroup, the complexity of any subgroup attack when n is prime will
be 2n/2 no matter what the factorizations of 2n + 1 and 2n − 1 are.

Let us now explicit Camion’s attack by choosing the following chain of
subgroups

G1 = T up

G2 = T up1

G3 = {I},

where T up is the upper triangular subgroup of SL(2,F2n) and T up1 is the
Abelian group of order 2n defined by

T up1 := {( 1 b
0 1 )| b ∈ F2n} .

The lengths in Camion’s attack can be chosen as

l1 =
n

2
l2 = 2n/4

l3 = 1.

The first value l1 comes from the fact that random products of A0 and A1

basically yield random cosets in T up. The second value l2 must be large
enough so that products of length l2 of two random elements in an Abelian
group of order 2n − 1 yield

√
2n different elements. The third length is 1

because the elements of G2 have order 2. We obtain factorizations of the
identity of size 4n2n/4 with a computational cost of order 2n/2. The size of
the factorization can be reduced a lot by obtaining more than two different
products which belong to G1. Moreover, the time complexity of the second
step can be improved drastically by solving discrete logarithms, as we now
elaborate.
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5.4 New collision and preimage attacks

In this section, we decompose the representation problem into its hard and
easy components and we exploit this decomposition to build new collision
and preimage attacks against the Zémor-Tillich hash function. Our collision
attack improves upon Camion’s “tower-of-subgroups” attack as it consider-
ably reduces the time complexity of its second step. The preimage attack
extends the collision attack with (interestingly) the same time complexity.
Our attacks are generic in the sense that they do not depend on the parame-
ters; in particular they work even if n is prime. With a time complexity close
to 2n/2, they beat by far the birthday bound and ideal preimage complexities
which are 23n/2 and 23n for the Zémor-Tillich hash function.

In Section 5.4.1 we present our results on the representation problem;
in Sections 5.4.2 and 5.4.3 we give collision and preimage attacks of time
complexity close to 2n/2 but large memory requirements, and in Section 5.4.4
we remove the memory requirements using distinguished points techniques.

5.4.1 Hard and easy components of collision search

In this section, we consider the generic subgroups of SL(2,F2n) (subgroups
existing for any parameter n), including the subgroups of diagonal or tri-
angular matrices and the subgroups of matrices with a given left or right
eigenvector. We show that finding elements of these subgroups together with
their factorization is nearly as hard as finding collisions for the Zémor-Tillich
hash function. As our reductions involve solving discrete logarithms in F∗2n
we do not claim PPT (probabilistic polynomial time) reductions but reduc-
tions that are practical for the parameters initially suggested by Zémor and
Tillich.

We start with an easy proposition that will simplify our proofs later.

Proposition 5.8

(a) Let ( a b ) , ( a′ b′ ) ∈ F2
2n with a, a′ 6= 0 and M ∈ SL(2,F2n) such that

( a b )M = ( a′ b′ ). Then there exists ε ∈ F2n such that M =
(
a−1 b

0 a

) (
a′ b′

0 a′−1

)
+

ε ( ba ) ( a′ b′ ) .

(b) If M1 =
(
a−1
0 b0
0 a0

)(
a1 b1
0 a−1

1

)
+ε1

(
b0
a0

)
( a1 b1 ) and M2 =

(
a−1
1 b1
0 a1

)(
a2 b2
0 a−1

2

)
+

ε2
(
b1
a1

)
( a2 b2 ) then M1M2 =

(
a−1
0 b0
0 a0

)(
a2 b2
0 a−1

2

)
+ (ε1 + ε2)

(
b0
a0

)
( a2 b2 ).

Proof: Part (a) is implied by the two following observations:
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• For ε = 0 we have ( a b )
(
a−1 b

0 a

) (
a′ b′

0 a′−1

)
= ( a′ b′ ).

• If M1,M2 ∈ SL(2,F2n) satisfy (a, b)M1 = (a, b)M2 = (a′, b′) then M1 +
M2 = ε ( ba ) ( a′ b′ ). Indeed, let c, d such that ( a bc d ) is unimodular and
let
(
a′ b′
c1 d1

)
:= ( a bc d )M1 and

(
a′ b′
c2 d2

)
:= ( a bc d )M2. As M1,M2 and ( a bc d )

are in SL(2,F2n), we have det
(
a′ b′
c1 d1

)
= det

(
a′ b′
c2 d2

)
= 1. We get

M1 +M2 = ( a bc d )
−1 [( a′ b′

c1 d1

)
+
(
a′ b′
c2 d2

)]
= ( d bc a )

(
0 0

c1+c2 d1+d2

)
= ( ba ) ( c1+c2 d1+d2 ) .

Moreover, as ( c1+c2 d1+d2 ) ( ba ) = a(d1 + d2) + b(c1 + c2) = (ad2 + bc2) +
(ad1 + bc1) = 0, we get the result.

Part (b) is a straightforward computation. �

We now define the short (generalized) representation problem in F∗2n and
we show how it can be solved for small n (and certainly if n ≤ 170). The short
representation problem is Problem 3.3 with an additional size constraint.

Problem 5.1 Short representation problem in F∗2n: Given N (randomly cho-
sen) elements gi ∈ F∗2n, find a factorization

∏
geii = 1 such that

∑
|ei| is not

too large.
Short generalized representation problem in F∗2n: Given N (randomly cho-
sen) elements gi ∈ F∗2n and a (randomly chosen) element g0 ∈ F∗2n, find a
factorization

∏
geii = g0 such that

∑
|ei| is not too large.

Proposition 5.9 The (generalized) representation problem can be solved in
groups F∗2n where the discrete logarithm problem can be solved.

Proof: Let gi ∈ F∗2n , i = 0, ...N . Let g a generator of F∗2n , and let αi
be the discrete logarithms of gi with respect to base g. The representa-
tion problem amounts to solving the following problem: find {ei} such that∑
eiαi = α0 mod (2n−1) and

∑
|ei| is not too large. A good solution to this

problem can be computed with the LLL algorithm [165].�

If the exponents αi are random numbers uniformly distributed in [1, 2n−1]
the smallest solution has expected size

∑
i |ei| about N2n/N (approximating

that there is no collision, the sums
∑
eiαi for ei ≤ 2n/N produce the 2n − 1

possible values). The LLL algorithm actually gives a solution such that∑
|ei|2 is close to optimal, but this is enough for our purposes. By the

LLL approximation bound, the solution provided using LLL has a norm 2
smaller than

√
N2n/N+N which is subexponential for N ≈

√
n. In practice,
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LLL performs much better and in the analysis of our algorithms, we will
approximate that the size of the solution given by LLL algorithm is also
about N2n/N .

With this method, the representation problem in F∗2n can be solved if
discrete logarithms can be computed, in particular the representation prob-
lem can be solved today for n ≤ 170. The following result follows from
Proposition 5.9.

Proposition 5.10 Let n be such that discrete logarithms can be solved in
F∗2n. Let D, T up, T low,Lv,Rv ⊂ SL(2,F2n) be the subgroups of diagonal,
upper and lower triangular matrices and the subgroup of matrices with left
or right eigenvector v. If an attacker can compute N random elements Mi

of one of these subgroups together with bit sequences mi of length at most
L hashing to these matrices, then he can also find a message m such that
hZT (m) = I. The message m has expected size smaller than NL2n/N in the
diagonal case and smaller than NL21+n/N in the other cases.

Proof: We use the descriptions of subgroup elements in Proposition 5.4.

Any diagonal matrix can be written as Di =
(
ai 0

0 a−1
i

)
for some ai ∈ F∗2n . Let

{ei} be a solution to the representation problem with respect to {ai}, that is∏
aeii = 1. Construct m as the concatenation of e1 messages m1, e2 messages

m2, etc. (in any order). Then HZT (m) =
∏
Dei
i =

(∏
a
ei
i 0

0
∏
a
−ei
i

)
= I.

Similarly, an upper triangular matrix Ti can be written as
(
ai bi
0 a−1

i

)
for

some ai ∈ F∗2n , bi ∈ F2n . Let {ei} be a solution to the representation problem
with respect to {ai}, that is

∏
aeii = 1. Construct m′ as the concatenation of

e1 messages m1, e2 messages m2, etc. (in any order) and m = m′||m′. Then
HZT (m′) =

(
1 b
0 1−1

)
for some b ∈ F2n and HZT (m) = I.

By definition each Mi ∈ L( a b ) satisfies ( a b )Mi = λi ( a b ) for some
λi ∈ F∗2n . Let {ei} be a solution to the representation problem with re-
spect to {λi}, that is

∏
λeii = 1. Construct m′ as the concatenation of

e1 messages m1, e2 messages m2, etc. (in any order) and m = m′||m′.
Then ( a b )HZT (m′) = ( a b ) which by Proposition 5.8 implies HZT (m′) =
I + ε ( ba ) ( a b ) hence HZT (m) = I.

The proof for T low and Rv are similar and the claim on the message
lengths follows from our analysis of the representation problem in F∗2n . �

The parts of Proposition 5.10 concerning Lv and Rv have interesting
graph interpretations that we give for Lv in Section 5.5.3.
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5.4.2 A new generic collision attack

We now give an algorithm finding N2 matrices Mi such that ( 1 0 )Mi =
λi ( 1 0 ) for some λi ∈ F∗2n , and combining them as in Proposition 5.10 to find
collisions for the Zémor-Tillich hash function.

We denote by P1(F2n) the projective space of dimension 1 on F2n , which
is the set of equivalence classes of F2n ×F2n that results from identifying two
vectors ( a1 b1 ) and ( a2 b2 ) if and only if ( a2 b2 ) = λ ( a1 b1 ) for some λ ∈ F∗2n .
We denote by [a : b] the projective point that is the equivalence class of a
vector ( a b ). To any message m = m1m2...mk we associate two projective
points q(m), q−1(m) ∈ P1(F2n) as follows. We define

( a(m) b(m) ) := ( 1 0 )
k∏
i=1

Mmi = ( 1 0 )HZT (m),

( a′(m) b′(m) ) := ( 1 0 )
1∏
i=k

M−1
mi

= ( 1 0 )HZT (m)−1,

then q(m) := [a(m) : b(m)] and q−1(m) := [a′(m) : b′(m)].
Our algorithm first performs a birthday attack [273] to find collisions

on the q values as follows. Random messages m and m′ of size k > n/2
are generated and stored together with q(m) and q−1(m′), until m1,m2 are
found such that q(m1) = q−1(m2) (see Figure 5.2). As there are 2n + 1
points in P1(F2n), the probability that q(m1) = q−1(m2) for some m1,m2 is

1 −
(

1− 2N1

2n+1

)2N1

after 2N1 steps. In particular, after 2N1 = 2n/2 steps we

have a probability 1− e−1 ≈ 0.63 to know a message m := m1||m2 of size 2k
such that ( 1 0 )hZT (m) = λ ( 1 0 ) for some λ ∈ F∗2n .

This collision search is repeated until N2 distinct messages mi are found
such that ( 1 0 )hZT (mi) = λi ( 1 0 ) for some λi ∈ F∗2n . To guarantee that the
collisions found are all distinct, we may perform each collision search with a
different length k > n/2, or choose k slightly larger than n/2 + log2(N2), say
k = n/2 + log2(N2) + 10.

The next step of the algorithm combines the messages mi to get a collision
for the Zémor-Tillich hash function. As in the proof of Proposition 5.10, we
compute a solution {ei} to the representation problem in F∗2n with respect to
the λi, that is

∏
λeii = 1. From this solution, we finally construct a message

m′ as the concatenation of each message mi repeated ei times (in any order),
and a message m = m′||m′ that collides with the void message as shown in
the proof of Proposition 5.10.

To analyze this attack, suppose that the N2 collision searches are done
with k = n/2 + 1, ..., n/2 + N2 and that the algorithm described in Sec-
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[1 : 0]

[1 : 0]

q(m) and q−1(m
′) values

1

Figure 5.2: Collision search on q values.

tion 5.4.1 is used to solve the representation problem. The expected size of
the collision is then bounded by (n/2 + N2)N22n/N2+2, the memory require-
ment is 2n/2+1n and the time complexity is N22n/2+1t + tREP where t is the
time needed to compute one q value and tREP is the time needed to solve
the representation problem. In particular for n = 130 and N2 = 16, this
attack produces a collision to the void message of size about 218 in time 269t
and memory requirements 269. The memory requirements will be removed
in Section 5.4.4 by using distinguished points techniques [219].

5.4.3 A new generic preimage attack

We now extend our ideas to a preimage attack. Interestingly, this attack has
essentially the same complexity as the collision attack.

Suppose we want to find a preimage to a matrix M = ( a bc d ), that is a mes-
sage m = m1...mk such that M = HZT (m) =

∏
Mmi . As we showed in pre-

vious section, random messages mi of size L > n such that ( 1 0 )HZT (mi) =
λi ( 1 0 ) for some λi ∈ F∗2n can be found with memory n2n/2+1 and time
2n/2+1t. Similarly, random messages mi, i = 0, ...N2 of size L > n satisfy-
ing ( 1 0 )HZT (m0) = λ0 ( a b ) and ( a b )HZT (mi) = λi ( a b ) , i > 0 for some
λi ∈ F∗2n can also be found with the same time and memory complexities.

Solving a (generalized) representation problem, we can compute {ei} such
that

∏
λeii = λ0, hence we can compute a message m′0 of size N2L2n/N2

and a matrix M0 := HZT (m′0) such that ( 1 0 )M0 = ( a b ). Similarly, from
N3 different solutions to the representation problem

∏
λeii = 1 we get N3

messages m′i of size N2L2n/N2 such that ( a b )HZT (m′i) = ( a b ). Let ( c′ d′ ) :=
( 0 1 )HZT (m′0). As ad′ + bc′ = ad+ bc = 1, we have a(d+ d′) + b(c+ c′) = 0,
that is ( c+c′ d+d′ ) = δ0 ( a b ) for some δ0 ∈ F2n .
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According to Proposition 5.8, for all i > 0 there exists δi ∈ F2n such
that HZT (m′i) = ( 1 0

0 1 )+δi ( ba ) ( a b ); moreover we have HZT (m′i1)HZT (m′i2) =
( 1 0

0 1 ) + (δi1 + δi2) ( ba ) ( a b ). Suppose the δi values generate F2n/F2, which is
very likely if N3 is shortly bigger than n, say N3 = n+ 10. Then by solving
a binary linear system, we can write δ0 =

∑
i∈I δi for some I ⊂ {1, ..., N3} of

size ≤ n and hence M1 :=
∏

i∈I HZT (m′i) = ( 1 0
0 1 ) + δ0 ( ba ) ( a b ). Finally, we

have M0M1 =
(
a b
c′ d′

)
[( 1 0

0 1 ) + δ0 ( ba ) ( a b )] = ( a bc d ).

This shows that any message made of m′0 concatenated with any con-
catenation of the messages m′i, i ∈ I, is a preimage to ( a bc d ). The collision
size is about bounded by N3(n/2 + N2)N22n/N2+2, that is 12n2(n + 10) if
N2 = n and N3 = n+ 10. The memory requirement of this attack is 2n/2+1n
and the time complexity is N22n/2+1t + tREP where t is the time needed to
compute one q value and tREP is the time needed to solve the representation
problem (note that finding N3 solutions to a representation problem essen-
tially requires the same time as finding one solution because both times are
essentially determined by the computation of the discrete logarithms). As
for our collision attack, the memory requirements can be removed by using
distinguished points techniques.

5.4.4 Memory-free versions of our attacks

The attacks of Sections 5.4.2 and 5.4.3 require storing two databases of about
2n/2 projective points in P1(F2n) and their corresponding messages. We
now remove the memory requirements by using distinguished points tech-
niques [219].

Let α : P1(F2n) → {0, 1}k and β : P1(F2n) → {0, 1} be two “pseudoran-
dom functions” and let ϕ : P1(F2n)→ P1(F2n) be defined by

p→ ϕ(p) =

{
q(α(p)) if β(p) = 0
q−1(α(p)) if β(p) = 1,

where k > n is arbitrarily chosen and q and q−1 are defined as in Section 5.4.2.
The iterates q0, ϕ(q0), ϕ(ϕ(q0)), ... of ϕ on q0 all belong to the finite domain

P1(F2n) so at some point iterating ϕ will produce a collision (see Figure 5.3),
that is two points p1 and p2 such that ϕ(p1) = ϕ(p2) = c. If the behavior of
ϕ is sufficiently random then β(p1) 6= β(p2) with a probability 1/2, in which
case α(p1) and α(p2) can be combined to produce a message m of size 2k
such that ( 1 0 )hZT (m) = λ ( 1 0 ) for some λ ∈ F∗2n .

The functions α and β do not need to be “pseudorandom” in the strong
cryptographic meaning, but only “sufficiently pseudorandom” for the above
analysis to hold.
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Now that the problem of finding a collision on the q values has been
translated in the problem of detecting a cycle in the iterates of ϕ, we can
remove the memory requirements by standard techniques. We recall here
the method of distinguished points ; other methods are described in [242].
Let Dd := {q = [a : b] ∈ P1(F2n)|b 6= 0, lsbd(a/b) = 0d} be sets of 2n−d

distinguished q values such that their d last bits are all 0. During the collision
search, we only store the q values that belong to D and only look for collisions
on these particular q values. Finding a collision c′ on distinguished points
requires 2d−1 additional steps in average but the memory is reduced to 2n/2−d;
if d = n/2−10 the time overhead is negligible and the memory requirements
are very small (see Figure 5.4).

From the two distinguished points p′1 and p′2 that precede c′ in the iterates
of ϕ, we can recover the points p1 and p2 that produce the actual collision c as
follows. Iterate again ϕ on p′1 and p′2 and store only distinguished points but
this time with d = n/2 − 20. After about 2n/2−10 steps on each side (and a
small memory of about 211) a collision c′′ and preceding distinguished points
p′′1 and p′′2 are found that are closer to the actual collision c, p1, p2. Iterating
again from p′′1 and p′′2 with a larger distinguished-point set, we finally get the
actual collision with small time overhead and small memory.

q0

c

p1
p2

1

Figure 5.3: Iterating ϕ
from some initial point q0,
we eventually get a colli-
sion c

q0

c

p1
p2

p′1

c′

p′2

1

Figure 5.4: Collision graph with markers on the distin-
guished points. The average distance between two distin-
guished points is 2d. The average length of the path is
2n/2. Finding a collision on a distinguished point requires
essentially the same time as finding a general collision, as
soon as 2d << 2n/2.

With this method instead of the trivial collision search steps, our collision
and preimage attacks require negligible memory and essentially the same
time complexity. As the output of Zémor-Tillich is about 3n bits, these
attacks are far better than birthday and optimal preimage bounds. In the
following sections, we introduce two variants of Zémor-Tillich with reduced
output sizes respectively 2n and n bits, and we show that these variants
are essentially as secure as the original Zémor-Tillich for sufficiently small
parameters including the parameters initially suggested in [258].
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5.5 New variants of ZT hash

The attacks of Section 5.4 suggest that the output of the Zémor-Tillich hash
function should be of n bits rather than 3n bits. In this section, we introduce
two variants of ZT hash, the vectorial and the projective variants with output
sizes respectively 2n and n bits. We show that the original function is collision
resistant if and only if its vectorial variant and (for small n) if and only if its
projective variant are collision resistant. Section 5.5.1 discusses the vectorial
variant and Section 5.5.2 the projective variant. Graphical interpretations of
our results are given in Section 5.5.3.

5.5.1 Vectorial variant of Zémor-Tillich

Our first variant Hvec
ZT is simply the first row of Zémor-Tillich, that is

Hvec
ZT (Pn(X),m) := ( a b )

if HZT (Pn(X),m) = ( a bc d ). Alternatively, we may parameterize the func-
tion Hvec

ZT by an initial vector ( a0 b0 ) 6= ( 0 0 ) as Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m) :=

( a0 b0 )HZT (Pn(X),m). Clearly, the output has 2n bits.

As for the original function, the security of this variant can be related to
both algebraic and graph problems. Finding a collision corresponds to finding
two messagesm andm′ such that ( 1 0 )HZT (Pn(X),m) = ( 1 0 )HZT (Pn(X),m′),
in particular it is enough to find one messagem such that ( 1 0 )HZT (Pn(X),m) =
( 1 0 ). Finding a preimage to a vector ( a b ) is finding a message m such that
( 1 0 )HZT (Pn(X),m) = ( a b ).

The graph associated to this function is the Hvec
ZT graph described in

Section 5.5.3 (see Figure 5.5). Finding a collision for Hvec
ZT is finding two

paths in this graph starting and ending at the same vertex; in particular,
finding a cycle in Hvec

ZT is enough to find a collision for Hvec
ZT . Computing a

preimage to a vertex ( a b ) is finding a path from ( a0 b0 ) to ( a b ).

The following proposition shows that Hvec
ZT is collision resistant if and only

if the original function HZT is collision resistant.

Proposition 5.11 If there exists a PPT (probabilistic polynomial time) algo-
rithm that for randomly chosen starting vectors ( a0 b0 ) 6= ( 0 0 ) finds a col-
lision on Hvec

ZT (Pn(X)|| ( a0 b0 ) , .), then there exists a PPT algorithm finding
collisions for the original Zémor-Tillich function with the same polynomial
as parameter.

Proof: Given a PPT algorithm Avec finding collisions for the vectorial
version, we build a PPT algorithm Amat finding collisions for the original ma-
trix version. The algorithm Amat first picks a random matrix M0 :=

(
a0 b0
c0 d0

)
∈
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SL(2,F2n) and runs Avec on (a0, b0) to get two messages m10 and m11 cor-
responding to matrices M10 and M11 such that (a0, b0)M10 = (a0, b0)M11 =
(a1, b1). Without loss of generality, we can assume that (a1, b1) is randomly
uniformly distributed, otherwise we may just append the same randomly
chosen sequence of bits to both messages. Similarly, we can also assume
that a1 6= 0 since adding the same single bit to both paths would remove
this assumption. Algorithm Amat then calls again Avec on (a1, b1) to get two
matrices M20 and M21, etc. It repeats this operation n+ 1 times.

Let vi := ( ai bi ) and ṽi :=
(
bi
ai

)
. According to Proposition 5.8(a), the

matrices Mij can be written as

Mij =

(
a−1
i−1 bi−1

0 ai−1

)(
ai bi
0 a−1

i

)
+ εij ṽi−1vi

for some εij ∈ F2n . Applying Proposition 5.8(b) recursively, for any e =
e1...en+1 ∈ {0, 1}n+1, we have

n+1∏
i=1

Miei =

(
a−1

0 b0

0 a0

)(
an+1 bn+1

0 a−1
n+1

)
+

(
n+1∑
i=1

εiei

)
ṽ0vn+1.

For 1 ≤ i ≤ n+ 1, let εi := εi0 + εi1. Seeing each εi as a binary vector of
length n over F2, these vectors are linearly dependent. Moreover, finding a
subset I of {1, ..., n + 1} such that

∑
i∈I εi = 0 simply amounts to invert a

binary linear system, which is cubic in n+ 1.

We now conclude the description of Amat. After computing I ⊂ {1, ..., n+
1} such that

∑
i∈I εi = 0, the algorithmAmat returnsm = m10||m20||...||mn+1,0

and m′ = m1e1||m2e2||...||mn+1,en+1 where ei = 1 if and only if i ∈ I. By the
discussion above, it is clear that

HZT (Pn(X),m′) = HZT (Pn(X),m)

=

(
a−1

0 b0

0 a0

)(
an+1 bn+1

0 a−1
n+1

)
+

(
n+1∑
i=1

εi0

)
ṽ0vn+1.

�

The reduction of Proposition 5.11 is polynomial but not completely tight:
the algorithm Amat runs n+ 1 times the algorithm Avec. Note that if instead
of Avec we have an algorithm A′vec returning a message m corresponding to
a cycle for the vectorial version, then the message m||m is a collision for the
matrix version. Indeed, if ( a b )M = ( a b ) Proposition 5.8(a) shows that M
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can be written as M =
(
a−1 b

0 a

) (
a b
0 a−1

)
+ ε ( ba ) ( a b ) = I + ε ( ba ) ( a b ) hence

by a straightforward computation M2 = I.

Despite the reduction in Proposition 5.11, the vectorial version of Zémor-
Tillich has a weakness that was not present in the original function. For any
a ∈ F∗2n , we have

( a aX ) (X 1
1 0 ) = ( 0 a ) = ( a aX ) (X X+1

1 1 ) .

Therefore, if the adversary can choose the starting point, it can create a colli-
sion (m,m′) := (0, 1) by choosing any vector ( a aX ) as starting vector. Alter-
natively, the adversary can create a collision (m,m′) := (m1||0||m2,m1||1||m2)
for any bitstrings m1,m2 by “multiplying backward” some vector ( a aX ) by
A−1

0 and A−1
1 according to the bits of m1. We point out that these weak-

nesses should not be considered as collision attacks but rather as additional
trapdoor attacks specific to the vectorial version. In Section 9.6.2, we will
discuss an idea due to Zémor to prevent this weakness.

5.5.2 Projective variant of Zémor-Tillich

Our second variant Hproj
ZT exploits even further Proposition 5.10. We define

Hproj
ZT (Pn(X)|| ( a0 b0 ) ,m) := [a : b]

where ( a b ) := Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m) and [a : b] ∈ P1(F2n). Finding

a collision for Hproj
ZT (Pn(X)|| ( a0 b0 ) , .) is finding two messages m and m′

such that ( a0 b0 )HZT (Pn(X),m) = λ ( a0 b0 )HZT (Pn(X),m′) for some λ, in
particular it is enough to find a cyclic collision which is a message m such
that ( a0 b0 ) is a left eigenvector of HZT (Pn(X),m).

The output of Hproj
ZT is very close to n bits. For the parameters suggested

by Tillich and Zémor, its collision resistance is equivalent to the collision
resistance of the original function.

Proposition 5.12 If there exists an algorithm that finds collisions on
Hproj
ZT (Pn(X)|| ( a0 b0 ) , .), there exists an algorithm that finds collisions on

Hvec
ZT (Pn(X)|| ( a0 b0 ) , .), assuming that for some n′ > n it is feasible to com-

pute n′ discrete logarithms in F∗2n and one subset sum problem of size n′.
If we denote by tproj, tDL and tSS(n′) the times needed respectively to find
collisions on the projective version, to solve one discrete logarithm problem
in F∗2n and to solve a subset sum problem of size n′, collisions on the vectorial
version can be found in time n′(tproj + tDL) + tKN(n′).
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Proof: Given an algorithm Aproj finding collisions for the projective ver-
sion, we build an algorithm Avec finding collisions for the vectorial version.
Receiving an initial vector v0 = (a0, b0), Avec forwards it to Aproj and receives
two messages m10,m11. To the two messages correspond two vectors (a10, b10)
and (a11, b11) = λ1(a10, b10) for some λ1. The algorithm Avec computes the
discrete logarithm d1 of λ1 with respect to some generator g of F∗2n . The al-
gorithm Avec then runs Aproj on the projective point (a10, b10) and computes
d2 similarly, etc.

After n′ steps, the algorithm Avec computes a subset I ⊂ {1, ..., n′} such
that

∑
i∈I di = 0 mod 2n − 1. By concatenating the paths miei where ei = 1

if i ∈ I and ei = 0 otherwise, algorithm Avec produces a collision with the
message m10||...||mn′0 for the vectorial version. The output is correct because
both messages lead to the vector

(∏
i∈I λi

)
(an′0, bn′0) = g

∑
i∈I di(an′0, bn′0) =

(an′0, bn′0).

The claim on the running time follows straightforwardly. �

The best choice for n′ depends on the exact values of tproj, tDL and
tSS(n′). Solving discrete logarithms problems is believed to be hard but
is definitely feasible in F∗2n if n < 170. Computing I ⊂ {1, ..., n′} such that∑

i∈I di = 0 mod 2n−1 is related to the subset sum problem which is NP-hard
but usually easy in average. For the parameters proposed by Zémor-Tillich,
lattice reduction algorithms like LLL will probably succeed in performing the
reduction. Another method is to use Wagner’s “k-lists” algorithm [263] for
solving the subset sum problem. This algorithm can solve the subset sum
problem in time and space k2n/(1+log k) which for k ≈

√
n is roughly 22

√
n

which is about 226 for n = 170. The drawback with this method is that n′

must also increase to 22
√
n hence the discrete logarithm costs increase and

the quality of the reduction decreases.

Assuming the existence of an algorithm A′proj computing cyclic collisions
on the projective version (messages mi such that (a0, b0)HZTPn(X)mi =
λi(a0, b0) for some λi) the reduction slightly improves. Indeed, Avec must
only compute a small integer solution (x1, ..., xn′) to

∑
i xidi = 0 mod 2n− 1

instead of a binary solution. The reduction algorithm still has to compute
discrete logarithm problems but it must not solve any subset sum problem.

The projective version is subject to the same attacks as the matrix and
vectorial versions, plus other trapdoor attacks that were not possible in the
matrix version nor even in the vectorial version. With a probability of about
one half on the choice of two bitstrings m and m′, there exists an initial vec-
tor (a0, b0) such that Hproj

ZT (Pn(X)|| ( a0 b0 ) ,m) = Hproj
ZT (Pn(X)|| ( a0 b0 ) ,m′).

Indeed, let (m1 m2
m3 m4 ) := HZT (Pn(X),m) and

(
m′1 m

′
2

m′3 m
′
4

)
:= HZT (Pn(X),m′).
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Setting apart the case ( a0 b0 ) = ( 0 1 ) we can assume without influencing the
projective hash result that the initial vector writes as ( a 1 ). The equality of
the two projective hash values therefore translates into a quadratic equation
in a

a2(m1m
′
2 +m′1m2)+a(m1m

′
4 +m′4m1 +m2m

′
3 +m′2m3)+(m3m

′
4 +m′3m4) = 0

which has solutions with a probability of about one half.

5.5.3 Graph-theoretical perspectives on our variants

We now provide graphical interpretations of our results. We define the graphs
ZT vec and ZT proj corresponding to our vectorial and projective versions of
Zémor-Tillich, we relate them to the Zémor-Tillich graphs ZT and we study
their properties. Finally, we provide graphical interpretations of our main
propositions.

Recall that the Zémor-Tillich hash function is associated to a Cayley
graph ZT , in which each vertex corresponds to a matrix M ∈ SL(2,F2n)
and each edge to a couple (M1,M2) ∈ SL(2,F2n)2 such that M2 = M1A0 or
M2 = M1A1 [258].

We now construct the graphs ZT vec and ZT proj as follows. For ZT vec,
we associate a vertex to each row vector ( a b ) ∈ F1×2

2n \{( 0 0 )} and an edge to
each couple of such vectors (( a1 b1 ) , ( a2 b2 )) satisfying ( a2 b2 ) = ( a1 b1 )A0 or
( a2 b2 ) = ( a1 b1 )A1. Alternatively, the graph ZT vec can be constructed from
the graph ZT by identifying two vertices M1 =

(
a1 b1
c1 d1

)
and M2 =

(
a2 b2
c2 d2

)
when ( a1 b1 ) = ( a2 b2 ). An example of graph ZT vec is shown in Figure 5.5.
As shown by the new trapdoor attacks of Section 5.5.1, the ZT vec graph has
girth 1 unlike the original Zémor-Tillich graph.

Similarly, we associate a vertex of ZT proj to each projective point qi =
[ai : bi] ∈ P1(F2n) and an edge to each couple (q1, q2) such that λ ( a2 b2 ) =
( a1 b1 )A0 or λ ( a2 b2 ) = ( a1 b1 )A1 for some λ ∈ F∗2n . Alternatively, the
graph ZT proj may be constructed from the graph ZT vec by identifying two
vertices ( a1 b1 ) and ( a2 b2 ) when ( a1 b1 ) = λ ( a2 b2 ) for some λ ∈ F∗2n . The
girth of graphs ZT proj is also 1. Two examples of such graphs are shown in
Figure 5.6.

According to Proposition 5.8, finding a cycle in ZT vec is just as hard as
finding a cycle in ZT because if ( a b )M = ( a b ) then M2 = I. Moreover,
according to Proposition 5.11, an algorithm finding two paths in ZT vec that
end at the same vertex and start at a given random vertex is sufficient to
find a cycle in ZT .
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Figure 5.5: ZT vec graph for parameter P5(X) = X5 +X2 + 1. The vertices are labeled
by vectors. Red dotted (resp. blue solid) arrows correspond to multiplication by matrix
A0 (resp. A1). Each polynomial

∑
aiX

i is written as
∑
ai2i.
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Figure 5.6: ZT proj graph for parameter P5(X) = X5+X2+1 and P7(X) = X6+X2+1.
The vertices are labeled by projective points. Red (resp. blue) arrows correspond to
multiplication by matrix A0 (resp. A1). Each polynomial

∑
aiX

i is written as
∑
ai2i.
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The representation of graphs ZT vec that is given in Figure 5.5 presents a
radial symmetry. This symmetry is not surprising as it reflects the relation
( a b )Ai = ( a′ b′ ) ⇔ [λ ( a b )]Ai = [λ ( a′ b′ )]: multiplying each vertex of
ZT vec by a constant λ is equivalent to a rotation of the graph. The projective
graphs ZT proj are obtained by identifying the vertices that are equal up to
a rotation.

A vertex in the graph ZT vec can be characterized by a radial and an
angular position. A cycle in the graph ZT proj induces a path in the graph
ZT vec from a vertex to another vertex with the same radial coordinate, but
not necessarily the same angular coordinate. Clearly, different such paths can
be combined to give a cycle in the graph ZT vec. According to Proposition
5.10 and its proof, this can be done if the discrete logarithm problem, hence
the representation problem, can be solved in F∗2n . Proposition 5.12 even
shows that an algorithm finding two paths in ZT proj that end at the same
vertex and start at a given random vertex is sufficient to find a cycle in
ZT vec.

A cycle in ZT vec induces cycles in both radial and angular coordinates.
Propositions 5.10, 5.11 and 5.12 mean that solving the angular part of the
representation problem is easy once the radial part can be solved to produce
various points with the same radius.

The graphs ZT vec and ZT proj are quotient graphs of the graph ZT , hence
their expanding properties are at least as good. Indeed, let f : F2

2n \ (0, 0)→
R be an eigenvector of the adjacency matrix of the vectorial version with
eigenvalue µ: for any v ∈ F2

2n \ (0, 0) we have

f(v) = µ(f(vA−1
0 ) + f(vA−1

1 )).

It follows that the vector f̂(M) : SL(2,F2n) → R : f̂(M) := f((1, 0)M) is
an eigenvector of the adjacency matrix of the matrix version with the same
eigenvalue µ, because

f̂(M) = f((1, 0)M) = µ(f((1, 0)MA−1
0 ) + f((1, 0)MA−1

1 ))

= µ(f̂(MA−1
0 ) + f̂(MA−1

1 )).

This shows that the largest eigenvalue of the vectorial version is at most as
large as the corresponding eigenvalue of the matrix graph, hence the expan-
sion of the vectorial version is at least as good as the expansion of the matrix
version. By a similar argument, the expansion of the projective version is at
least that of the vectorial version.
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5.6 Cryptanalytic perspectives for ZT hash

We now discuss some cryptanalytic approaches that are promising for break-
ing the Zémor-Tillich hash function even if they have been unsuccessful so
far. In particular, we introduce four problems that are all sufficient to solve
in order to find collisions for the Zémor-Tillich hash function. We start with
lifting attacks in Section 5.6.1 and we present other ideas in Section 5.6.2.

5.6.1 Lifting attacks

Lifting attacks have broken Zémor’s first proposal and the LPS and Mor-
genstern hash functions, but they have been unsuccessful so far against the
Zémor-Tillich hash function.

A lifting attack was developed by Tillich and Zémor [260] to solve the
representation problem corresponding to the very first Cayley hash proposal
by Zémor (Section 4.3.2). We recall that this scheme uses the matrix group
SL(2,Fp) and the generators S0 = ( 1 1

0 1 ) and S1 = ( 1 0
1 1 ). The idea of the

attack is to lift the representation problem from SL(2,Fp) to SL(2,Z).
The attack has two steps. First, a matrix M = ( a bc d ) ∈ SL(2,Z) is found

that reduces to the identity modulo p. The matrix M is then expressed as a
product of S0 and S1 in SL(2,Z), which can be done as follows: let (x, y) =
(a, b) if a + b ≥ c + d, and (x, y) = (c, d) otherwise. Apply the Euclidean
algorithm to (x, y), that is, successively compute (q1, r1), (q2, r2), (q3, r3), etc
such that x = yq1 + r1, y = r1q2 + r2, r1 = r2q3 + r3, etc. These steps can
also be written as ( xy ) =

(
1 q1
0 1

)
( r1y ) = ( 1 1

0 1 )q1 ( r1y ), ( r1y ) = ( 1 0
1 1 )q2 ( r1r2 ), etc

and so reveal the factorization of M .
The attack works well because all the nonnegative matrices of SL(2,Z)

can be factored as products of the matrices S0 and S1, and because it is
possible to choose M such that the factorization is expected to be small [260].

A lifting attack was also found by Tillich and Zémor against the LPS
hash function presented in Section 4.3.4. Their attack lifts the represen-
tation problem from PSL(2,Fp) to an appropriate subset Ω of SL(2,Z[i]),
with the property that any element of Ω has a unique factorization in the
lifted generators [259]. Subsequently, we have extended Tillich and Zémor’s
algorithm to a preimage attack against LPS hash function and to the Mor-
genstern hash function [205]. The details of these attacks will be elaborated
on in Chapter 6.

A lifting attack against the Zémor-Tillich hash function would lift the
representation problem from SL(2,F2n) to a subset Ω′ of SL(2,F2[X]), such
that any element (or a non-negligible proportion of the elements) of Ω′ can be
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written as a product of Ã0 and Ã1, the lifts of A0 and A1 into SL(2,F2[X]).
As we saw in Section 5.1.2, factorizing a matrix M ∈ SL(2,F2[X]) is easy
when such a factorization exists, so the problem we are facing is to define Ω′

together with an algorithm to find a lift of the identity in Ω.

Ideally, Ω′ should be Ω := 〈Ã0, Ã1〉, i.e. the set of matrices in SL(2,F2[X])

that is generated by Ã0 and Ã1. At least, |Ω∩〈Ã0, Ã1〉|/|Ω| should not be too
small and Ω should contain lifts of the identity. However, although the sets{
Ãe,∀e

}
with Ã ∈ SL(2,F2[X]) are very well understood (see Section 5.1.3),

the set 〈A0, A1〉 cannot be characterized easily. We point out this problem
as probably the most interesting research direction for the cryptanalysis of
Zémor-Tillich hash function.

Problem 5.2 Find a good characterization of Ω = 〈Ã0, Ã1〉 ∈ SL(2,F2[X]).

5.6.2 Other ideas

One of the most successful approaches against Zémor-Tillich has been sub-
group attacks. Subgroups specific to particular n values were first targeted
by Steinwandt et al. and our goal in Section 5.4 was to exploit some sub-
groups of SL(2,F2n) that exist for any n value. For well-chosen parameters,
we do not expect any more serious threat to come from this side alone. How-
ever, subgroup attacks and in particular Proposition 5.10 could potentially
be used to improve other attacks like Geiselmann’s and the lifting attacks.

Let us first consider our variant of Geiselmann’s attack. Let us re-
mind that in this version, we were looking for exponents {ei} such that
Ae10 A

e2
1 A

e3
0 A

e4
1 = M , where M is the hash of a random message and the

other matrices are decomposed in Jordan form: A0 = S0D0S
−1
0 where D0 =(

λ0

λ−1
0

)
and D1 =

(
λ1

λ−1
1

)
are diagonal matrices (see Section 5.3.4). The

resulting matrix equation S0D
e1
0 S
−1
0 S1D

e2
1 S
−1
1 S0D

e3
0 S
−1
0 S1D

e4
1 S
−1
1 = M gives

a system of four polynomial equations in the unknowns x1 = λe10 , x2 = λe21 ,
x3 = λe30 and x4 = λe41 .

We may relax this system by requiring the matrix M to be any upper
triangular matrix instead of the hash of a known message: according to
Proposition 5.10, triangular matrices can be easily combined to produce the
identity. The advantage of the new matrix equation is that it only gives one
polynomial equation in the unknowns xi (the equation constraining the lower
left term of M to be 0), hence it has many other solutions including small
ones. The problem of finding collisions for Zémor-Tillich now reduces to the
following problem:
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Problem 5.3 Given l field elements λi ∈ F∗2n and a polynomial equa-
tion f(x1, ...xl) = 0 in the variables xi ∈ F∗2n, find {xi = λeii } such that
f(x1, ...xl) = 0 and

∑
|ei| is not too large.

Here is a somehow trivial way to solve this problem: Choose arbitrary “small”
values (in the sense of the exponents being small) for all the xi but two of
them. Without loss of generality, we may assume that x1 and x2 remain
to be fixed. Precompute λe22 for e2 = 1, ..., 2n/2. For e1 = 1, ..., 2n/2 find
x2 such that f(λe11 , x2, x3, ..., xl) = 0 and check whether this value appears
in the list of precomputed values; repeat until finding one solution. This
algorithm will succeed with a high probability but with time complexity,
memory requirements and message lengths about 2n/2, that is worse than
the algorithms of Section 5.4.

Problem 5.3 interestingly combines the additive and multiplicative laws
of the field F2n . Solving problems involving only the additive law of F2n is
easy. In all generality, such a problem asks for finding xi ∈ F2n such that∑
aixi = a0 for some ai ∈ F2n . As F2n is a vector space over F2, this problem

amounts to solving a binary linear system which is very easy.
Solving problems involving only the multiplicative law of F2n is also easy

for n ≤ 170. In all generality, these problems are representation problems,
which as shown in Proposition 5.9 can be solved if discrete logarithm prob-
lems can be solved. Although no efficient algorithm has been devised so
far, discrete logarithm problems are well-understood and can be solved by
subexponential algorithms that are practical for moderate n sizes.

Problem 5.3 mixes the additive and multiplicative laws of F2n . It might
help finding collisions for Zémor-Tillich as it seems reasonable that some
particular instances have easy solutions. However, we expect Problem 5.3 to
be harder in general than pure additive or pure multiplicative problems over
F2n , as we expect that neither the additive nor the multiplicative structure
of F2n can be exploited to solve the polynomial equation.

The lifting attack could potentially also benefit from a mixed strategy:
the attacker could lift random elements of a subgroup G′ of SL(2,F2n) instead
of lifting the identity. If G′ is the group of unimodular diagonal matrices, a
group of unimodular triangular matrices, or the group of unimodular matrices
with some given eigenvector, then the factorizations of random elements gi ∈
G′ can be combined as in Proposition 5.10. This idea leads to the following
relaxation of Problem 5.2.

Problem 5.4 Find a good characterization of Ω′, the subset of Ω = 〈Ã0, Ã1〉 ∈
SL(2,F2[X]) whose elements reduce to elements of G′ modulo Pn(X), where
G′ is the group of unimodular diagonal matrices, a group of unimodular tri-
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angular matrices, or the group of unimodular matrices with some given eigen-
vector.

We conclude our tour of attacks with an idea suggested in [205] to use the
collision and preimage algorithms for the Morgenstern hash function (Sec-
tion 4.3.5 and Chapter 6) to construct collisions and preimages for the Zémor-
Tillich hash function when n is even. As 〈s0, s1, s2〉 = SL(2,F2n) = 〈A0, A1〉
these algorithms could at first sight be of some help to find Zémor-Tillich
collisions and preimages. At least, we can reduce the problem of finding
preimages of any hash value to the problem of factoring three particular el-
ements s0, s1, s2, a potentially easier problem. In a first step, an adversary
would construct one factorization of s0, s1 and s2 as products of A0 and A1.
In the second step, he would use the algorithms mentioned above for colli-
sions and preimages and replace each occurrence of sj in the solution by its
corresponding factorization as a product of A0 and A1.

One idea to construct the factorization of s0, s1, s2 as products of A0, A1

is to use NA0 , NA1 and NI factorizations of A0, A1, I as products of s0, s1, s2

and try to combine these factorizations. Let M := {0, 1, 2}∗/ ∼ where ∼ is
the equivalence relation on {0, 1, 2}∗ defined by m1 ∼ m2 if and only if m2

can be constructed from m1 by inserting or removing the sequences 00, 11
and 22 any times. The problem of finding collisions for Zémor-Tillich now
reduces to the following problem.

Problem 5.5 From NA0, NA1 and NI elements aj ∈M, construct sequences
m1, m2 and m3 as concatenations of the aj, such that m1, m2 and m3 are in
the same equivalence classes as respectively 0, 1, and 2, and have a size that
is not too large.

For small NA0 , NA1 and NI , this problem is expected to have no solution.
Indeed, let us define the size of an element m ∈ M as the smallest of the
lengths of all the elements in the equivalence class of m. Then, for two
elements m1,m2 ∈M of size L, the size of m1||m2 is between 0 and 2L and
is much more likely to be close to 2L. The size of m1||m2 will be smaller
than L only if more than one half of the last terms of m1 coincide with the
first terms of m2. In mean, we need about 2L/2 messages m2 to have one
message inside able to reduce the size of m1. As the sequences produced by
the algorithms of [205] have length about 8n, we believe that this approach
cannot produce collisions nor preimages with reasonable sizes.
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5.7 Is ZT hash secure?

Collision and preimage attacks are often considered successful (even if not
practical) if they respectively beat the birthday paradox bound and the ex-
haustive search bound in time complexity. For Zémor-Tillich hash function
these bounds are respectively 23n/2 and 23n.

The practicability of a collision or preimage attack is usually measured
by its computational time and its memory requirements. As discussed in
Section 2.5.1, an attack with time complexity more than 270 to 280 or memory
requirements larger than 260 to 270 cannot be executed today even by a
large governmental agency. For Zémor-Tillich hash function, the existence of
trivial but useless collisions suggests adding the message length as a quality
criterium. Message lengths of 240 to 250 seem close to the practical limit, as
they will appear only if large hard disks are hashed.

The trivial attack and Geiselmann’s attacks (Section 5.3.4) can definitely
not be considered as practical attacks, the message lengths being larger than
or about 2n. These attacks would become practical only for parameters n so
small that even generic collision searches would also be practical. In order
to perform the attacks of Sections 5.3.2 and 5.3.3, an adversary must choose
the polynomial Pn(X) himself, while the attacks of Section 5.3.5 only apply
to weak parameters n.

To prevent all these attacks, the parameter n should be prime and the
polynomial Pn(x) should be chosen in a clearly honest way (for example, as
the smallest irreducible polynomial of degree n or as the smallest irreducible
polynomial larger than the polynomial whose coefficients are the truncated
binary representation of π).

Our collision and preimage attacks of Section 5.4 are generic in the sense
that they work for any parameter. With a temporal complexity close to 2n/2,
they beat by far the ideal collision and preimage bounds 23n/2 and 23n. The
existence of these attacks suggests that the output of the Zémor-Tillich hash
function should be of n bits rather than 3n bits.

For n = 130, the temporal complexity of our attacks is very close to
practical bounds, hence we recommend to increase the parameter sizes by at
least 30 bits. Taking n = 251 would give a very good security margin with
respect to both computers and small attack improvements.

In Section 5.5, we have given two variants of the Zémor-Tillich hash
function with output sizes respectively 2n and n, that are as secure as the
original function for the parameters proposed.

Assuming the parameters are chosen as before, the only practical attacks
against the Zémor-Tillich hash function are the generic malleability attack
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of Section 4.2.7 and the preimage attack for small messages that was pre-
sented in Section 5.3.1. These attacks do not contradict preimage or collision
resistance of the function, but they discard its use in all applications where
these properties are not sufficient, in particular all applications requiring a
function behaving “like a random oracle”.

In Section 5.6, we have described some tentative approaches that could
eventually lead to an actual breaking of the function. Among all the ideas,
techniques and approaches we have described in this chapter, we believe
that lifting strategies are the most likely to succeed one day, possibly in
combination with some subgroup approach. Besides, we also recommend
to further investigate Problem 5.3 which nicely combines the additive and
multiplicative laws of finite fields.

The Zémor-Tillich hash function somehow follows the block design of the
Merkle-Damgard construction with message blocks of size 1 bit, the “com-
pression function” being the matrix multiplication by A0 or A1 depending
on the message bit. However, in Merkle-Damgard constructions, the com-
pression function is usually supposed to have some cryptographic strength
(in particular collision and preimage resistance) that the Zémor-Tillich com-
pression function clearly does not have. As observed in Section 4.2.6, a direct
consequence of this is the possibility of “meet-in-the-middle” attacks, such
that computing preimages is not harder than finding collisions. Interestingly,
our new subgroup collision attack of Section 5.4.2 could also be extended into
a preimage attack with the same complexity.

The preimage and collision resistances of the Zémor-Tillich hash function
reduce to the hardness of simply-stated mathematical problems, a very de-
sired property of cryptographic algorithms. The problems here are however
non-standard; they have been much less studied than discrete logarithm,
integer factorization or elliptic curves discrete logarithm problems.

The (generalized) representation and the balance problems in SL(2,F2n)
have apparent weaknesses that were turned into partial attacks, and hash
functions similar to the Zémor-Tillich hash have been completely broken.
Hard and easy components of the representation problem for Zémor-Tillich
have been clearly separated in Section 5.4.1. However, despite the numerous
potential breaking approaches, none of them has really been damageable so
far, and the approaches successful against other schemes could not be applied
to the Zémor-Tillich hash function.

Today and 15 years after Zémor-Tillich publication, these problems re-
main essentially unbroken. We stress that they should be scrutinized again by
the cryptographic community, in such a way that the function could become
more trusted ... or completely broken.



Chapter 6

Cryptanalysis of LPS and
Morgenstern hash functions

The LPS graph family was introduced into the expander hash construction
by Charles et al. because of its “optimal” expanding properties [167, 68]:
as discussed in Section 4.2.5, a large expansion guarantees a good output
distribution of the hash function for relatively short messages. Subsequently,
we proposed the Morgenstern hash function [206] with the aim of facilitating
implementations and reducing the computational time.

In this Chapter, we show that neither the LPS nor the Morgenstern hash
function are secure, in the sense that they are neither collision-resistant nor
one-way. We start by describing the collision attack against LPS hash that
was discovered by Tillich and Zémor [259]. We then extend this attack to
a preimage attack against LPS hash, and we develop similar collision and
preimage attacks against the Morgenstern hash function. We conclude with
a few comments on how to repair LPS and Morgenstern hash functions and
on the usefulness of our algorithms outside their original purposes.

This chapter is based on the work of Tillich and Zémor [259] and our work
in collaboration with Kristin Lauter and Jean-Jacques Quisquater [204]. The
results presented in [204] have been developed in two directions: first, further
insight on the running times of our algorithm are given based on experimental
results and second, the preimage attack against Morgenstern hash function
has been fully developed. Examples of collision and preimage computations
are given in Appendix E.
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6.1 Tillich-Zémor collision attack against LPS

hash

We recall from Section 4.3.4 that the LPS hash function is constructed from
the non-bipartite LPS Ramanujan graph family [167, 68]. If p and l are
primes, l is small and p is large, both p and l are equal to 1 mod 4 and l is a
quadratic residue modulo p, these graphs are the Cayley graphs CG,S defined
by the group G = PSL(2,Fp) and the graph generators S = {sj}j=0,...,l,
where

sj =

(
αj + iβj γj + iδj
−γj + iδj αj − iβj

)
, j = 0, ..., l;

i2 = −1 mod p and (αj, βj, γj, δj) are all the integer solutions of α2 + β2 +
γ2 +δ2 = l, with α > 0 and β, γ, δ even. Charles et al. recommend to use p of
1024 bits and l = 5, in which case the graph generators are (after reindexing
such that s−1

i = s−i for all i)

s±1 =

(
1± 2i 0

0 1∓ 2i

)
, s±2 =

(
1 ±2
∓2 1

)
s±3 =

(
1 ±2i
±2i 1

)
.

In this section and the following one, we write i for the complex imaginary
number satisfying i2+1 = 0 and i for a solution to i2+1 ≡ 0 mod p. Moreover,
we use small letters for elements of Z and corresponding capitalized letters
for corresponding elements in Zp.

6.1.1 Outline of the attack

Tillich and Zémor’s algorithm lifts the graph generators and the represen-
tation problem from PSL(2,Fp) to an appropriate subset Ω of SL(2,Z[i]).
This set Ω is defined by

Ω =

{(
a+ bi c+ di
−c+ di a− bi

)
|(a, b, c, d) ∈ Ee for some integer e > 0

}
(6.1)

where Ee is the set of 4-tuples (a, b, c, d) ∈ Z4 such that
a2 + b2 + c2 + d2 = le

a > 0, a ≡ 1 mod 2
b ≡ c ≡ d ≡ 0 mod 2.

(6.2)

We call the first of these equations describing Ee the norm equation, as the
left-hand side of this equation is the norm of the quaternion corresponding



6.1. TILLICH-ZÉMOR COLLISION ATTACK 149

to the quadruplet (a, b, c, d) (see [167]). To each graph generator sj ∈ S is

associated a lift s̃j ∈ S̃ ⊂ Ω of this graph generator defined by

s̃j =

(
αj + iβj γj + iδj
−γj + iδj αj − iβj

)
, j = 0, ..., l.

The set Ω has two important properties: first, any element of Ω admits a
unique factorization in terms of the lifts of the graph generators, and second,
there exists a “reduction modulo p” multiplicative homomorphism ϕ from Ω
to PSL(2,Fp) that allows translation of this factorization back to PSL(2,Fp).

Proposition 6.1 [167, 259] Any matrix M in Ω can be expressed in a unique
way as a product

M = ±lrs̃m1 s̃m2 ...s̃me

where logl(detM) = e+ 2r, s̃mj ∈ S̃ for j ∈ {1, ..., e} and s̃mj s̃mj+1
6= lI for

j ∈ {1, ..., e− 1}.

Proposition 6.2 The map ϕ : Ω→ PSL(2,Fp)(
a+ bi c+ di
−c+ di a− bi

)
→
(

A+Bi C +Di
−C +Di A−Bi

)
where A = a mod p,B = b mod p, C = c mod p,D = d mod p, is a multi-
plicative homomorphism. Therefore, any factorization M = s̃m1 s̃m2 ...s̃me ∈
Ω corresponds to a factorization ϕ(M) = sm1sm2 ...sme ∈ PSL(2,Fp).

In their exposition, Tillich and Zémor decompose their attack into three
steps. The first step lifts the identity I ∈ PSL(2,Fp) to an element Ĩ ∈ Ω

such that ϕ(Ĩ) = λI for some λ ∈ F∗p with the additional condition that
the lift is not a multiple of the identity in Ω. It amounts to finding integers
a, b, c, d and λ satisfying the following conditions:

(a, b, c, d) ∈ Ee
(a, b, c, d) 6≡ (0, 0, 0, 0) mod l
(a, b, c, d) ≡ λ(1, 0, 0, 0) mod p.

(6.3)

Putting every congruence condition into the norm equation leads to a dio-
phantine equation whose resolution by Tillich and Zémor will be presented
in Section 6.1.2.

The second step of the attack is to factorize the lifted element Ĩ of Ω
into products of lifted generators s̃j, j = 1, ..., l + 1. By Proposition 6.1,
we know that this factorization is unique and has size e, so let us write it
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Ĩ = s̃j1 s̃j2 ...s̃je . Multiplying on the right by a lifted generator s̃ ∈ S̃ gives a
matrix that is divisible by l if and only if s̃ = (s̃je)

−1 so by trying each of the
graph generators we get the last factor, and we then proceed recursively.

The final step translates the factorization of I ′ in Ω into a factorization
of the identity in PSL(2,Fp). By using the homomorphism ϕ defined in
Proposition 6.2, this last step is trivial.

6.1.2 Solving the equation

We now sketch the algorithm used by Tillich and Zémor to solve System
6.3. The exponent e is arbitrarily put to be even, that is e = 2k, where k
is the smallest integer such that lk − 4p2 > 0. Combining the equations of
Systems 6.2 and 6.3, we may write b = 2xp, c = 2yp and d = 2zp for some
integers x, y, z; the only constraints not taken into account so far are the
norm equation, the constraint a > 0, a ≡ 1 mod 2 and the condition that the
lift is not a multiple of identity (which will not be checked until the end).
The norm equation can be written as

a2 + 4x2p2 + 4y2p2 + 4z2p2 = l2k (6.4)

hence
(lk − a)(lk + a) = 4p2(x2 + y2 + z2).

Fixing a = lk − 2mp2 which is odd and positive by definition of k, the
norm equation may be “simplified by 4p2” to lead to the equation

x2 + y2 + z2 = m(lk −mp2).

Using Legendre’s theorem [140], Tillich and Zémor have shown that this
equation has solutions either when m is equal to 0 or 1. A solution can be
found by assigning random values to x until the resulting equation

y2 + z2 = n := m(lk −mp2)− x2 (6.5)

has solutions for integers y, z, which can be verified by Fermat’s theorem [140]:
y2 + z2 = n has solutions if and only if all the prime factors of n congruent
to 3 modulo 4 occur with an even exponent in the factorization of n. In
particular, and this is easier to check as it does not require any factorization
step, the equation has solutions if n = 2sp′ for some prime p congruent to 1
modulo 4.

Solving Equation (6.5) can be done very efficiently if solutions exist.
When n is prime, a solution can be found with the continuous fraction algo-
rithm which is essentially the Euclidean algorithm (we refer to [259] for more
details). The composite case reduces to the prime case as if y2

1 + z2
1 = n1 and

y2
2 + z2

2 = n2 then (y3, z3) = (y1y2− z1z2, z1y2 + y1z2) satisfies y2
3 + z2

3 = n1n2.
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6.1.3 Runtime of the algorithm

Tillich and Zémor estimate that their algorithm runs in time O(log p). They
argue that the number of x’s values that have to be tested in order to find
a proper n value (a value which is the sum of two squares) is about O(log p)
and the continuous fraction expansion also requires time O(log p). Their
algorithm is therefore very efficient and it is definitely practical when p has
1024 bits as prescribed by [68].

6.2 Preimages for the LPS hash function

Suppose now that we are given a matrix M =
(
M1 M2
M3 M4

)
∈ PSL(2,Fp) which

has square determinant, and we are asked to find a preimage, that is a
factorization of it with the graph generators. By solving two linear equations
in Fp we can write M in the form

M =

(
A+Bi C +Di
−C +Di A−Bi

)
.

6.2.1 Outline of the attack

Our algorithm follows along the lines of Zémor and Tillich’s. We first lift the
problem from PSL(2,Fp) to the set Ω defined above, then we factorize in Ω
and we finally come back to PSL(2,Fp). The only difference is in the first
step. Lifting the representation problem now amounts to finding integers
a, b, c, d and λ satisfying the following conditions:

(a, b, c, d) ∈ Ee
(a, b, c, d) not divisible by l
(a, b, c, d) ≡ λ(A,B,C,D) mod p.

We write a = Aλ + wp, b = Bλ + xp, c = Cλ + yp and d = Dλ + zp
with w, x, y, z ∈ Z. For convenience we choose e even, that is e = 2k for k
an integer. The norm equation becomes

(Aλ+ wp)2 + (Bλ+ xp)2 + (Cλ+ yp)2 + (Dλ+ zp)2 = l2k. (6.6)

At first sight, this equation seems much harder to solve than Equa-
tion (6.4). In the case B = C = D = 0, the norm equation is Equation (6.4)
which was solved by Zémor and Tillich as recalled in Section 6.1.2. Their
algorithm fixes the value of a = Aλ + wp in an appropriate way that allows
“simplifying the equation by p2”. In Equation (6.6), we cannot fix a indepen-
dently and then divide by p2 because of the term 2p(wA+ xB+ yC + zD)λ.
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Since we do not simplify by p2, the coefficients of degree-2 terms are huge
(at least p), and the resulting equation is at first sight very hard to solve.

We overcome this difficulty with a new idea. In the remainder of this
section, we will solve the preimage problem for diagonal matrices with A
and/or B non-zero, and then we will write any matrix as a product of four
diagonal matrices and up to four graph generators. Altogether this leads
to an efficient probabilistic algorithm that finds preimages for the LPS hash
function.

6.2.2 Preimages for diagonal matrices

Now we show how to find a factorization of a matrix

M =

(
A+Bi

A−Bi

)
such that A2 + B2 is a square modulo p. Write y = 2y′ and z = 2z′ where
y′, z′ are integers. We need to find integer solutions to

(Aλ+ wp)2 + (Bλ+ xp)2 + 4p2(y′2 + z′2) = l2k

Aλ+ wp ≡ 1 mod 2
Bλ+ xp ≡ 0 mod 2

Fix k = dlogl(8p
2)e. As A2 +B2 is a square, there are exactly two values

for λ in {0, 1, ...p− 1} satisfying the norm equation modulo p:

(A2 +B2)λ2 = l2k mod p.

We choose either of them, and we let m := (l2k − (A2 + B2)λ2)/p. Our
strategy is to pick random solutions of

l2k − (Aλ+ wp)2 − (Bλ+ xp)2 ≡ 0 mod p2

Aλ+ wp ≡ 1 mod 2
Bλ+ xp ≡ 0 mod 2

until the equation
4(y′2 + z′2) = n

has solutions, where

n :=
(
l2k − (Aλ+ wp)2 − (Bλ+ xp)2

)
/p2.

A random solution to the congruence system is computed as follows: until
you get x with the correct parity, pick a random w ∈ {0, 1, ...p− 1} with the
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right parity and compute x = m
2λB
− A

B
w mod p. By the way k, x and w are

chosen we are sure that n > 0 so the equation 4(y′2 + z′2) = n has solution
if and only if 4 divides n and all prime factors of n congruent to 3 modulo
4 appear an even number of times in the factorization of n. To avoid the
factorization of n in the algorithm, we will actually strengthen this condition
to n being equal to 4 times a prime congruent to 1 modulo 4. When it has
solutions, the equation 4(y′2 + z′2) = n is easily solved with the Euclidean
algorithm, as recalled in [259]. After lifting the problem to SL(2,Z[i]) the
second and third steps of the algorithm are the same as in Tillich-Zémor
algorithm. So we are done with the factorization of diagonal matrices.

6.2.3 Reduction to the diagonal case

Now we show how to decompose any matrix M ∈ PSL(2,Fp) into a product
of diagonal matrices and graph generators. We may additionally assume that
all the entries of M are nonzero: if they are not, just multiply M by ss−1 for
some adequate s in S, and consider the factorization of s−1M . We will show
how to find (λ, α, ω, β1, β2) with the last four being squares, such that(

M1 M2

M3 M4

)
= λ

(
1 0
0 α

)(
f1 f2

f3 f4

)(
1 0
0 ω

)
= λ

(
f1 ωf2

αf3 αωf4

)
(6.7)

and(
f1 f2

f3 f4

)
=

(
1 2
−2 1

)(
1 0
0 β1

)(
1 2
−2 1

)(
1 0
0 β2

)(
1 2
−2 1

)
=

(
1− 4β1 − 4β2 − 4β1β2 2− 8β1 + 2β2 + 2β1β2

−2− 2β1 + 8β2 − 2β1β2 −4− 4β1 − 4β2 + β1β2

)
.

Lemma 6.1 Matrix equation (6.7) is equivalent to the following system:
M2M3f1f4 −M1M4f2f3 = 0
αM1f3 −M3f1 = 0
ωM3f4 −M4f3 = 0
λf1 −M1 = 0

(6.8)

Proof: (⇒) Fourth equation is entry (1,1) of the matrix equation. Third
equation is entry (2,1) times M1 minus entry (1,1) times M3. Second equation
is entry (1,2) times M1 minus entry (1,1) times M2. First equation is entry
(1,1) times entry (2,2) times M2M3 minus entry (1,2) times entry (2,1) times
M1M4.



154 CHAPTER 6. CRYPTANALYSIS OF LPS AND MORGENSTERN

(⇐) Last equation is M1 = λf1 that is entry (1,1). We have M2 = M1M4f2f3
M3f1f4

by first equation so M2 = f2
M4f3
M3f4

M1

f1
= f2ωλ by third and fourth equation,

that is entry (1,2). We have M3 = αM1f3
f1

= αλf3 by second then fourth

equation, that is entry (2,1). We have M4 = ωM3
f4
f3

by third equation, so

using the already proved entry (2,1) we have M4 = ωαλf3
f4
f3

= ωf4αλ that

is entry (2,2). �

In the system of equations (6.8), the first equation only involves β1 and
β2 while the other equations are linear once β1 and β2 are fixed. So we can
concentrate on solving the first equation, which is quadratic in both β1 and
β2:

M2M3f1f4 − M1M4f2f3 = 4(M2M3 −M1M4)(−β2
1 + 3β1 + 4)β2

2

+
(
M2M3(12β2

1 + 49β1 + 12) +M1M4(−12β2
1 + 76β1− 12)

)
β2

+4(M2M3 −M1M4)
(
4β2

1 + 3β1 − 1
)
.

Our algorithm then proceeds as follows:

1. Pick a random β1 which is a square.

2. Compute the discriminant of the quadratic equation in β2, β1. If it is
not a square, go back to 1.

3. Solve the quadratic equation. If none of the roots is a square, go back
to 1. Else, assign a quadratic root to β2.

4. Compute f1, f2, f3, f4.

5. Solve αM1f3 −M3f1 = 0 to get α. If α is not a square, go back to 1.

6. Solve ωM3f4 −M4f3 = 0 to get ω. If ω is not a square, go back to 1.

This concludes the exposition of our algorithm. Examples are given in Ap-
pendix E.

6.2.4 Runtime analysis

First consider the algorithm for diagonal matrices. Assuming n behaves “as
a random number” then according to the prime number theorem we will need
O(log n) = O(log p) trials before getting one n of the correct form. For each
trial, the most expensive computation is a primality test, which can be done
in polynomial time (in our implementation, we actually use the probabilistic
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function mpz probab prime p of GNU MP). So the algorithm for diagonal
matrices is probabilistic polynomial time. In the reduction algorithm, the
probability for a random number to be a square modulo p being one half, we
estimate that a solution (λ, α, ω, β1, β2) with the last four being squares can
be found in about 24 trials. Consequently, the whole algorithm is probabilistic
polynomial time.

We have implemented this algorithm in C using GNU MP. With this im-
plementation, finding preimages for 1024-bit parameters on an Intel Pentium
R 4CPU processor 3.20GHz requires between 10 and 40 seconds. Additional
timings for other n values are given in Figure 6.1.
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Figure 6.1: Computation times of our preimage algorithm for LPS hash
function for various parameters n

6.3 Collisions for the Morgenstern hash func-

tion

We now adapt the algorithms of Section 6.1 and 6.2 to the Morgenstern hash
function. We recall from Section 4.3.5 that this hash function is a Cayley
hash constructed from the Morgenstern Ramanujan graph family for binary
fields [190, 206]. Let q be a power of 2 and f(X) = X2 + X + ε irreducible
in Fq[x]. Let Pn(x) ∈ Fq[x] be irreducible of even degree n = 2d and let
Fqn be represented by Fq[x]/(Pn(x)). Morgenstern graphs are the Cayley
graph CG,S defined by the group G = PSL(2,F2n) and the graph generators
S = {sj}j=0,...q where

sj =

(
1 γj + δji

X(γj + δji + δj) 1

)
, j = 0, ..., q;
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and γj, δj ∈ Fq are all the q + 1 solutions in Fq for γ2
j + γjδj + δ2

j ε = 1.
In this section and the following one, we focus on the case q = 2 but the

attacks generalize easily to other powers of 2. When q = 2, f(X) = X2+X+1
and the 3 graph generators are

s0 =

(
1 1 + i
Xi 1

)
, s1 =

(
1 1
X 1

)
, s2 =

(
1 i

X(1 + i) 1

)
.

Let A := F2[X, Y ]/(Y 2 + Y + 1). In this section and the following, we
denote by i a root of i2 + i+ 1 = 0 in A and by i a root of the same equation
in F2n (which has a solution by Lemma 6.2 below). Moreover, we use small
letters for elements of F2[X] and the corresponding capitalized letters for the
corresponding “modulo Pn(X)” elements in the field F2n . Finally, we write
p for Pn(X) both to lighten notations and to emphasize the similarity with
the previous sections.

6.3.1 Outline of the attack

Our algorithm lifts the representation problem from SL(2,F2n) to a subset
Ω of SL(2,A). The relevant set is

Ω =

{(
a+ bi c+ di

X(c+ di+ d) a+ bi+ b

)
|(a, b, c, d) ∈ Ee for some integer e > 0

}
where Ee is the set of 4-tuples (a, b, c, d) ∈ F2[X] such that

(a2 + b2 + ab) + (c2 + d2 + cd)X = (1 +X)e

a ≡ 1 mod X
b ≡ 0 mod X.

We again call the first of these equations the norm equation. By [190],
corollary 5.4 and 5.7, if we restrict Ee to tuples (a, b, c, d) not divisible by
(1 + X), the elements of Ω have a unique factorization in terms of the lifts
of the graph generators:

s̃0 =

(
1 1 + i
Xi 1

)
, s̃1 =

(
1 1
X 1

)
, s̃2 =

(
1 i

X(1 + i) 1

)
.

Moreover, the “reduction modulo p” (a, b, c, d)→ (A,B,C,D) = (a, b, c, d) mod
p gives a homomorphism from Ω to SL(2,F2n):(

a+ bi c+ di
X(c+ di+ d) a+ bi+ b

)
→
(

A+Bi C +Di
X(C +Di +D) A+Bi +B

)
.
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From this it is now clear how the second and third steps of Tillich and
Zémor’s algorithm will work for Morgenstern hashes, so we now give details
for the first step. This amounts to lifting the representation problem, that is
finding a, b, c, d, λ ∈ F2n satisfying the following conditions:

(a, b, c, d) ∈ Ee
(a, b, c, d) 6≡ (0, 0, 0, 0) mod X + 1
(a, b, c, d) ≡ λ(1, 0, 0, 0) mod p.

Write b = Xpb′, c = pc′, d = pd′ for b′, c′, d′ ∈ F2[X] and arbitrarily
choose e = 2k and a = (1 + X)k + Xpm, with k ∈ Z and m ∈ F2[X] still
to be determined. Note that such an a satisfies a ≡ 1 mod X. The norm
equation becomes

X2p2m2 +X2p2b′2 +Xpb′
(
(1 +X)k +mXp

)
+Xp2(c′2 + d′2 + c′d′) = 0.

Simplifying by Xp, we get

Xpm2 +Xpb′2 + b′
(
(1 +X)k +Xpm

)
+ p(c′2 + d′2 + c′d′) = 0.

Reducing this equation modulo p we get b′
(
(1 +X)k +Xpm

)
≡ 0 which

implies that b′ = pb′′ for some b′′ ∈ F2[X]. The norm equation becomes

Xpm2 +Xp3b′′2 + pb′′
(
(1 +X)k +Xpm

)
+ p(c′2 + d′2 + c′d′) = 0.

Simplifying again by p, we get

c′2 + d′2 + c′d′ = n(b′′,m, k) := Xm2 +Xp2b′′2 + b′′(1 +X)k + b′′Xpm.

Our approach for step 1 will be to generate random m and b′′ (with X+1 -
b′′) until the equation c′2 +d′2 + c′d′ = n(b′′,m, k) has solutions, then to solve
this equation for c′, d′. As will be clear in Section 6.3.2, the equation has a
solution if and only if all the irreducible factors of n are of even degree. So
in particular

• We will choose b′′ = b(3)X + 1 for some b(3) ∈ F2[X] to avoid an X
factor.

• As the term Xp2b′′2 is of odd degree, we will make another term of
higher even degree, with the following strategy:

– Choose b′′ and m randomly of degree equal to or less than R.

– Choose k = 2 deg(p) + deg(b′′) + 2 + (deg(b′′) + ε) where ε = 0 if
deg(b′′) is even and ε = 1 if deg(b′′) is odd.
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If R is large enough we get an n with the desired property after sufficiently
many random trials on b′′ and m. In our implementation, we chose R = 10
which is more than enough for 1024-bit parameters. It remains to show how
to solve the equation c′2 + d′2 + c′d′ = n and to explain the condition on the
degrees of the irreducible factors of n. We begin with the solution of the
equation.

6.3.2 Solving c2 + d2 + cd = n

We first remark that it is enough to have an algorithm solving it when n
is irreducible. Indeed, if c2

1 + d2
1 + c1d1 = n1 and c2

2 + d2
2 + c2d2 = n2 then

(c3, d3) = (c1c2 + d1d2, c1d2 + c2d1 + d1d2) satisfies c2
3 + d2

3 + c3d3 = n1n2. So
suppose n is irreducible of even degree.

We describe a continued fraction algorithm for polynomials over F2 and
then we use it to solve the equation. For a fraction ξ = P

Q
where P and Q

are polynomials, let P = a0Q + r0 where deg r0 < degQ. Let Q = a1r0 + r1

with deg r1 < deg r0, then recursively for i = 2, ..., define ri−2 = airi−1 + ri
with deg ri < deg ri−1. (This is the Euclidean algorithm applied to the ring
F2[X].) Define p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1, and then recursively
pi = aipi−1+pi−2 and qi = aiqi−1+qi−2. (The fraction pi/qi is the ith truncated
continued fraction of P/Q.) We see recursively that qipi−1 + qi−1pi = 1, so
pi
qi

+ pi−1

qi−1
= 1

qi−1qi
and

P

Q
= a0 +

n∑
i=0

1

qi+1qi

where n is the first i such that pi/qi = P/Q. Consider the valuation v on
rational fractions defined as follows: v

(
a
b

)
= deg b − deg a if a, b 6= 0, and

v
(
a
b

)
= ∞ if a = 0, b 6= 0. Note that v(qi+1) ≤ v(qi), v(pi+1) ≤ v(pi), and

that

v

(
P

Q
+ a0 +

n′−1∑
i=0

1

qi+1qi

)
= v

(
n∑

i=n′

1

qi+1qi

)
≥ −v(qn′+1)− v(qn′).

As n has even degree, we can compute α ∈ F2[X] such that α2 +α+ 1 ≡
0 mod n (see Section 6.3.3). We apply a continued fraction expansion to
ξ = α

n
and let pi/qi be the successive approximations. Let j be such that

v(qj) ≥
v(n)

2
≥ v(qj+1).

We have

q2
j + (qjα + pjn)2 + qj(qjα + pjn) ≡ q2

j + q2
jα

2 + q2
jα ≡ 0 mod n.
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On the other hand, as

− deg(qjα + pjn) = v(n) + v(qj) + v

(
ξ +

pj
qj

)
≥ v(n) + v(qj)− v(qj)− v(qj+1) ≥ v(n)/2 = − deg(n)/2

we have

v
(
q2
j + (qjα + pin)2 + qi(qjα + pjn)

)
≥ 2 max (deg(qj), deg(qjα + pjn)) ≥ − deg n.

Consequently,

q2
j + (qjα + pjn)2 + qj(qjα + pjn) = n

and (c, d) = (qj, qjα + pjn) is a solution to c2 + d2 + cd = n.

6.3.3 Solutions to α2 + α + 1 ≡ 0 mod n

We now show that the equation α2 + α + 1 ≡ 0 mod n has solutions over
F2[X] for n irreducible if and only if the degree of n is even, and that in that
case a solution can be efficiently computed.

As the map α→ α2 +α is a linear application acting on the vector space
F2n/F2, solutions to this equation, if there are any, are found easily by writing
down then solving a linear system of equations. We conclude the exposition
of our algorithm by showing the following lemma.

Lemma 6.2 For n irreducible, α2 + α + 1 ≡ 0 mod n has solutions if and
only if d := deg(n) is even.

Proof:1 (⇒) Suppose α satisfies α2 + α + 1 ≡ 0 mod n. Then 1 = α + α2.
Squaring each side we get 1 = α2 + α22

, then squaring again and again we
get 1 = α22

+ α23
,... until 1 = α2d + α2d−1

= α + α2d−1
. Summing up these

equations we get d = 0, so d must be even.

(⇐) Now suppose d is even. Let β be a generator of F∗
2d

and let α = β
2d−1

3 .
Then α3 = 1 and α 6= 1 so α2 + α + 1 = 0. �

This concludes the description of our collision algorithm for Morgenstern
hash function. Intermediary results of the algorithm on toy parameters and
on parameters of 1024 bits are given in Appendix E.

1The lemma is a particular case of a standard result in finite field theory, stating that
Fpd

1
⊂ Fpd

2
if and only if d1|d2.
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6.3.4 Runtime analysis

We give some estimates for the complexity of our algorithm. Assuming the
polynomial n generated from random (b′′,m) behaves like random polyno-
mials of degree k, the number of its irreducible factors is asymptotically
K = O(log deg n) [106]. For n of degree even, we can reasonably approxi-
mate the probability that all its factors are of even degree by (1/2)K , hence
we will need 2K = O(deg n) = O(deg p) random trials. The factorization of
n can be done in O(log2+ε n) [245] and the continued fraction algorithm is
of complexity O(deg n), so the global complexity of our algorithm is proba-
bilistic polynomial time in deg p.

We have implemented this algorithm in C++ using NTL. With this im-
plementation, finding preimages for 1024-bit parameters requires between 10
and 25 seconds on an Intel Pentium R 4CPU processor 3.20GHz. Additional
timings for other n values are given in Figure 6.2.
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Figure 6.2: Computation times of our collision algorithm for Morgenstern
hash function for various parameters n

6.4 Preimages for the Morgenstern hash func-

tion

We now combine the ideas of the previous sections to produce a preimage
algorithm against the Morgenstern hash function. We focus again on q = 2
but extensions to other powers of 2 are easy.

Suppose we are given a matrix M =
(
M1 M2
M3 M4

)
∈ PSL(2,F2n) and we

are asked to find a preimage, that is a factorization of it with the graph



6.4. PREIMAGES FOR THE MORGENSTERN HASH FUNCTION 161

generators. By solving two linear equations in F2n we can write it in the
form

M =

(
A+Bi C +Di

x(C +Di +D) A+Bi +B

)
.

As most of the algorithm is a straightforward merge between the algo-
rithms of Sections 6.2 and 6.3, we have not implemented it but we provide
some runtime analysis. Like in Section 6.2, we first show how to produce
preimages of diagonal matrices and then reduce the general case to the diag-
onal case.

6.4.1 Preimages of diagonal matrices

With the lifting strategy, finding a preimage to a matrix

M =

(
A+Bi

A+Bi +B

)
amounts to finding λ, a, b, c, d ∈ F2[X] such that

(a, b, c, d) ∈ Ee
(a, b, c, d) 6≡ (0, 0, 0, 0) mod X + 1
(a, b, c, d) ≡ λ(A,B, 0, 0) mod p.

Writing a = Aλ+wp, b = Bλ+xp, c = yp and d = zp, the norm equation
becomes

(Aλ+wp)2 + (Bλ+xp)2 + (Aλ+wp)(Bλ+xp) +p2(y2 + z2 + yz) = (1 +X)e

or

(A2+B2+AB)λ2+(Aw+Bx)λp+(w2+x2+wx)p2+(y2+z2+yz)p2 = (1+X)e.

Fix e = 2k with k = 2 deg(p) + 1. The value of λ is fixed by reducing the
equation modulo p: λ is the square root modulo p of (1+X)e/(A2+B2+AB).
We then pick random values of (w, x) satisfying the equation modulo p2 and
such that Aλ+wp ≡ 1 mod X and Bλ+xp ≡ 0 mod X, until all irreducible
factors of

n := [(A2 +B2 +AB)λ2 + (Aw +Bx)λp+ (w2 + x2 + wx)p2 + (1 +X)e]/p2

have even degree. (By our choice of k, n has even degree equal to 4 deg p+2.)
After O(deg n) = O(deg p) random trials, we are likely to get n of the correct
form (see Section 6.3.4) after which we can solve the equation y2+z2+yz = n
as in Section 6.3.
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6.4.2 Reduction to the diagonal case

Now we show how to decompose any matrix M ∈ PSL(2,F2n) into a product
of diagonal matrices and graph generators. We may additionally assume that
all the entries of M are nonzero: if they are not, just multiply M by ss−1 for
some adequate s in S, and consider the factorization of s−1M . We will show
how to find (λ, α, ω, β1, β2) such that(

M1 M2

M3 M4

)
= λ

(
1 0
0 α

)(
f1 f2

f3 f4

)(
1 0
0 ω

)
= λ

(
f1 ωf2

αf3 αωf4

)
(6.9)

and(
f1 f2

f3 f4

)
=

(
1 1
X 1

)(
1 0
0 β1

)(
1 1
X 1

)(
1 0
0 β2

)(
1 2
X 1

)
=

(
1 + (β1 + β2 + β1β2)X 1 + β1X + β2X + β1β2

X + (β1 + β2 + β1β2)X β1β2 +X(1 + β1 + β2)

)
.

It is straightforwardly checked that Lemma 6.1 generalizes to Equation (6.9)
hence we are left with solving the equation M2M3f1f4 +M1M4f2f3 = 0 which
is quadratic in β1 and β2, after which we get λ, α and ω by solving three
linear equations. We have

M2M3f1f4 + M1M4f2f3 = X(M2M3 +M1M4)(β1 + 1)(β1 +X)β2
2

+
[
M2M3(X2β2

1 +Xβ2
1 +X2β1 + β1 +X2 +X)

+ M1M4(X2β2
1 +Xβ2

1 +X3β1 +Xβ1 +X2 +X)
]
β2

+X(M2M3 +M1M4)(β1 + 1)(1 + β1X).

This equation can be solved by picking random β1 values until the result-
ing quadratic equation in β2 has solution. Assuming the coefficients of this
equation behave reasonably randomly, a solution will be found after 2 trials
for β1 in mean.

6.4.3 Runtime analysis

Combining the estimations of Section 6.4.1 and 6.4.2, our preimage finding
algorithm for Morgenstern hash function runs in probabilistic polynomial
time.

6.5 Discussion

In this chapter, we have presented efficient algorithms finding preimages for
the LPS hash function and finding collisions and preimages for the Morgen-
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stern hash function with q = 2. Similar algorithms with the same complexity
can be derived for the Morgenstern hash function with different q values. Our
algorithms build upon the Tillich and Zémor algorithm [259] although they
are not trivial extensions of it.

Our algorithms may have applications outside the cryptographic com-
munity. The preimage finding algorithm for LPS hash actually solves the
diophantine Equation (6.4) which at first sight seems to be a very hard
problem. The path-finding and cycle-finding algorithms may improve the
understanding of LPS and Morgenstern graphs when considering their Ihara
Zeta-function. Finally, some of the numerous applications of expander graphs
in computer science could benefit from our new path-finding algorithms.

Because of all these actual and potential applications, we stress that our
algorithms and their running time estimates still may and should be improved
in many ways. The algorithms of Section 6.2 and 6.4 give paths of length
about 8 log p and 8 degPn(X) while the diameter of LPS and Morgenstern
graphs are known to be 2 log p and 2 degPn(X). Choosing a smaller k value in
the algorithms will decrease these lengths and may also improve the running
times. Finding other decompositions with less than 4 diagonal matrices is
another interesting approach. Finally, adapting our algorithms to make them
deterministic is a particularly interesting open problem.

Tillich and Zémor proposed to repair the LPS hash function by replacing
each generator si by its square s′i := s2

i [259]. With this modified hash
function, the lifting strategy would require lifting the identity (or any other
matrix) onto a matrix of Ω that has a very special and rare factorization
in terms of the si (namely every factor is repeated twice) or finding a good
characterization of the modified set Ω′ := 〈s′0, s′1, ..., s′l〉. Alternatively, Tillich
and Zémor also proposed to remove one of the graph generators of the LPS
hash function: again, the lifting strategy would fall upon the problem of
finding very special elements of Ω, belonging to a set that seems hard to
characterize. Similarly, the Morgenstern hash function may be repaired by
considering the directed Cayley graph generated by s′0 := s0s1 and s′1 :=
s0s2 [204]. We point out that with these modifications, the Cayley graphs
subjacent to LPS and Morgenstern hash functions are no longer Ramanujan.

The main two motivations in considering LPS and Morgenstern hash
functions instead of the Zémor-Tillich hash function were the Ramanujan
property and the ability to process more bits at once. We already pointed out
in Section 4.4 that the “optimal expansion rate” of Ramanujan graphs may
be inferior to the expansion rate of well-chosen directed graphs. In particular,
directed Cayley graphs of finite special linear groups like the Zémor-Tillich
graphs tend to have large expansion rates.
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Our implementations of LPS and Morgenstern hash functions (see Sec-
tion 4.3) have shown that the Zémor-Tillich hash function is actually twice
as fast as LPS and Morgenstern hash functions. It is easy to check that the
above modifications of these algorithms will certainly be even slower, and it
is not clear that a bound on their expansion rates can be derived more easily
than for the Zémor-Tillich hash function.

In this chapter, we have shown that the strong mathematical structure
present in the LPS and Morgenstern graph constructions can be exploited to
build very efficient collision and preimage attacks against the corresponding
hash functions. The same structure seems necessary to prove the Ramanujan
property from the Ramanujan’s conjecture [167] and it is therefore tempting
to conclude that using Ramanujan graphs for expander hashes is a bad idea
in general [259]. However, the Pizer hash function that we now discuss
contradicts this intuition: it is also built on a Ramanujan graph family and
it has resisted all attacks so far.



Chapter 7

The Pizer hash function

The Pizer hash function was introduced by Charles et al. together with the
LPS hash function [68]. Besides our vectorial and projective versions of
the Zémor-Tillich hash function (Section 5.5), it is the only expander hash
proposal made so far that is not a Cayley graph. The function is based on
the Pizer Ramanujan graph family [210]; it has been considered with a lot of
curiosity by cryptographers as a new beautiful application of elliptic curves
in cryptography. The function was also advertized outside the cryptographic
community thanks to Mackenzie’s article in Science journal [174].

The security of Pizer hashes relies on the hardness of building isogenies
or pairs of isogenies between supersingular elliptic curves. These problems
are non-standard problems in cryptography; they were partially considered
before by Galbraith [109] who pointed out their use for solving elliptic curve
discrete logarithms. The best known algorithms, provided by Galbraith, are
exponential.

Pizer hash security also relates to representation problems in quaternion
algebras. The supersingular elliptic curves over a finite field are in one-to-
one correspondence with the maximal orders in a quaternion algebra related
to this field: the original description of Pizer graphs was actually in the
language of maximal orders in a quaternion algebra. As the correspondence
itself is hard to compute, solving the representation problem does not suffice
to solve the problems on isogenies.

Pizer hashes are much less efficient than other expander hashes. The
efficiency is maximal when the parameter l is set to 2, but it is still more than
100 times slower than the Zémor-Tillich hash function. Indeed, a quadratic
equation over Fp2 must be solved at each step while only XORs and SHIFTs
must be performed for the Zémor-Tillich hash function.

In this chapter, we do not claim any significant result on the security
nor the efficiency of the Pizer hash function. For the completeness of the

165
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thesis, we reproduce here some of the results present in Charles et al.’s paper
and we evaluate the practicability of the function. We also point out (this
is joint work with Jean-Pierre Tignol) that the function would probably be
broken if it were described in the language of maximal orders rather than in
the language of supersingular elliptic curves. The Chapter is organized as
follows: Section 7.1 describes the Pizer hash function, Section 7.2 discusses
its security and Section 7.3 its efficiency. A short conclusion is given in
Section 7.4.

7.1 Description

Pizer hashes are expander hashes constructed from the Pizer Ramanujan
graph family [210] previously discovered by Mestre [180]. They are parame-
terized by a large prime p congruent to 1 modulo 12, a small prime l and a
supersingular elliptic curve over Fp defining the starting point in the graph.

Pizer graphs may be described in two equivalent languages but choosing
one or the other may affect the efficiency and the security of the Pizer hashes.
In Pizer’s original paper, the vertices of the graph are maximal orders in the
quaternion algebra over Q that is ramified only at p and ∞. In Charles et
al.’s paper [68], the vertices are seen as supersingular elliptic curves over Fp.
There exists a one-to-one correspondence between both types of objects but
as this correspondence has been itself hard to compute [68, 66], dealing with
supersingular elliptic curves rather than with orders in quaternion algebras
is more than an aesthetic choice. As we will discuss later in this chapter, it
may affect positively the security and badly the efficiency.

Pizer hashes are defined as follows. Let p be a large prime congruent to 1
modulo 12 and let l be a small prime; Charles et al. propose to use p ≈ 2256

and focus mainly on l = 2. The set of vertices of the graph is the set V of
supersingular j-invariants over the finite field Fp2 ; for p ≡ 1 mod 12 there
are b p

12
c such points [248]. There is an edge in the graph from j1 to j2 if

and only if there is an isogeny of degree l from E1 to E2, where E1 and E2

satisfy j1 = j(E1) and j2 = j(E2). When p ≡ 1 mod 12 this gives rise to an
undirected l + 1-regular graph. The edges must be ordered in some way to
complete the definition of Pizer hashes; a method is described in [68]. More
details on the hash computation are given in Section 7.3 below.

Charles et al.’s paper does not fully specify the key generation algorithm
for Pizer hashes but it does provide rationales for identifying sets of pa-
rameters that should be avoided. Without influencing the security, we can
consider that the starting edge is fixed by the hash algorithm once the start-
ing point is given. We can also consider that different l values define different
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hash functions hence the parameter l is also part of the hash algorithm and
not of the key. A Pizer hash key is therefore made of a prime p congruent
to 1 modulo 12 and of a supersingular j-invariant j0 in Fp2 used as starting
point in the graph.

The parameter p and the starting point may greatly influence the collision
resistance of the hash function, and it is not clear to us whether an efficient
key generation algorithm can actually be constructed for Pizer hashes. Pizer
graphs do not have large girth in general; Charles et al. describe a method
for choosing p such that the graph has no cycle of length 2. The method can
be extended to prevent larger cycles but it is not clear whether the resulting
key generation algorithm is efficient enough for practice. Charles et al. also
suggest to choose the initial point to prevent short cycles from starting from
that point. As an example, for p ≡ 1 mod 24 and l ≡ 3 mod 4 they identify
a maximal order in the quaternion algebra ramified at p and ∞ such that
no cycle in the Pizer graph starts from this order. As the correspondence
between supersingular elliptic curves and maximal orders is not efficiently
computable, it is not clear either whether this method leads to an efficient
key generation algorithm including an initial supersingular j-invariant.

7.2 Security considerations

When l is fixed and p varies, Pizer graphs form a Ramanujan family of
l + 1-regular graphs, hence their non-backtracking mixing rate ρ̃ is at most
1√
q

which amounts to 1√
2

per bit of message. Pizer’s graphs have a small

diameter D(Πl,p) ≤ 2 logl
p
12

+ 2 logl 2 + 1 [210]. However, as discussed above,
they do not have large girth unless additional restrictions are put on the
prime p.

Collision and preimage resistances are implied by the hardness of prob-
lems of constructing isogenies between supersingular elliptic curves.

Problem 7.1 Produce a pair of supersingular elliptic curves over Fp2, E1

and E2, and two distinct isogenies of degree lµ and lµ
′

between them that
have a cyclic kernel, for some integers µ, µ′.

Problem 7.2 Given E, a supersingular elliptic curve over Fp2, find an en-
domorphism f : E → E of degree l2µ for some integer µ that is not any
automorphism of E composed with the multiplication by lµ map.

Problem 7.3 Given E1 and E2, two supersingular elliptic curves over Fp2,
find an isogeny f : E1 → E2 of degree lµ between them, for some integer µ.
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Finding a collision for the Pizer hash function (with a given p and a
random starting point j0) implies a solution to Problem 7.1 with E1 such
that j(E1) = j0, and a solution to Problem 7.2 with E1 such that j(E1) = j0.
Moreover, finding preimages implies a solution to Problem 7.3 with j(E1) =
j0 [68]. Problems 7.1 to 7.3 are in a sense even harder than collision and
preimage problems: given an isogeny between two (possibly identical) elliptic
curves, decomposing this isogeny into a sequence of l-degree isogenies seems
to be a hard problem itself. (However, as a large degree isogeny is a rational
mapping with very large degrees in the nominator and the denominator, the
only way to provide it seems to be in factorized form, in which case the
problems are clearly equivalent.)

Problem 7.3 was introduced by Galbraith [109] who provided an algorithm
running in time O(p log p) for supersingular elliptic curves. For ordinary
curves, the problem was motivated by solving elliptic curve discrete logarithm
problems. (In supersingular curves, discrete logarithm problems are usually
much easier using efficiently computable bilinear maps to finite fields.) For
solving Problems 7.1 and 7.2, the most natural approach would be to work
with the quaternion algebra whose maximal orders are the endomorphism
rings of the supersingular elliptic curves over Fp2 .

Given a prime p, there exists one quaternion algebra

Ap,∞ = (α, β) := Q + Qα + Qβ + Qαβ

with α2, β2 ∈ Q, α2 < 0, β2 < 0 and αβ = −βα that is ramified exactly at p
and ∞. The maximal orders in this algebra are exactly the endomorphism
rings of the supersingular elliptic curves over Fp2 . In his paper [210], Pizer
defined his graphs as follows. Each vertex corresponds to a maximal order
in A and two orders o1 and o2 are neighbors if they are conjugated by an
element with quaternion norm l:

o2 = s−1
i o1si, n(si) = l.

The elements with norm l are easy to characterize by using the equivalence
between quaternions and 2×2 matrices with determinant 1. The correspond-
ing matrices si are all the matrices in the set

S :=

{(
1 b
0 l

)
|0 ≤ b ≤ l − 1

}⋃{(
l 0
0 1

)}
.

The set of matrices generated by products of S with length µ is therefore

S(µ) :=

{(
le b
0 lµ−e

)
|0 ≤ e ≤ µ, b < lµ−e

}
.
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Given a starting element in A, it is therefore possible to write an equation
expressing the fact that the conjugation of this element by an element of S(µ)

leads to a collision, and solving this equation brings a cycle in Pizer graphs.

This analysis is inspired by the attacks against LPS and Morgenstern
hash functions (see Chapter 6) and it is made possible by the very special
structure of the matrices involved. This analysis would probably lead to
collisions against the Pizer hash function if it was described in the language
of orders in a quaternion algebra like in Pizer’s paper [210]. However, as the
Pizer hash function is described in the language of elliptic curves and the
correspondence between the two “worlds” is hard to compute, the Pizer hash
remains currently unbroken.

7.3 Efficiency considerations

We now give some details on Pizer hash computation, that is, we show how
to perform a walk from one vertex to one of its neighbors according to the
message’s digits. The description follows [68].

Suppose we are at a given vertex labeled by a supersingular j-invariant
j. To this j-invariant corresponds an elliptic curve with equation E(j) :
y2 = x3 + 3kx + 2k where k = j

j−1728
. Let E[l] be the l-torsion of E; it is a

subgroup of E that is isomorphic to Z/lZ × Z/lZ. The l-torsion has l + 1
non-trivial cyclic subgroups, each of them defined by one of its generators.
By calculating the whole l-torsion, it is possible to fix a canonical ordering
of the l + 1 subgroups H0, ..., Hl [68]. To each subgroup Hi of the l-torsion
corresponds an isogeny of degree l that can be computed with Vélu’s formulae
[262, 68]; the isogeny maps E to E/Hi and j to its corresponding neighbor
in the graph.

Pizer hash computation is not very efficient. Vélu’s formulae only involve
additions, multiplications and squarings but computing the l-torsion of the
curve is the bottleneck at each step of the hash computation as it essentially
requires computing all the roots of the modular polynomial of order l which
can have a degree up to (l + 1)2. When l = 2, this step requires solving a
quadratic equation. Charles et al. evaluate that the whole algorithm takes
the time of about 2 log(p) multiplications per step. This is not very efficient
with respect to Zémor-Tillich, LPS and Morgenstern computation that only
require a few additions. On a 64-bit AMD Opteron 252 2.6GHz, Charles et
al.’s C implementation has a throughput of 13.1kb/s for primes p of 256 bits:
this corresponds to 1.588M cycles/byte!

The efficiency of Pizer hashes may probably be improved for l = 2 by
choosing primes p with a particular form and in general with a clever use
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of the modular polynomial properties [223] or maybe by changing the curve
coordinates. However, it will certainly never reach throughputs comparable
to SHA or even to Zémor-Tillich. In the language of quaternions or matrices,
the computation would only require a few multiplications per step, but as
pointed out above it would also be much less secure.

7.4 Conclusion

Pizer hash functions are an interesting new beautiful use of elliptic curves
in cryptography. Unlike the other expander hash functions considered in
this thesis, their security does not depend on the hardness of a representa-
tion problem but on isogeny problems and the hardness of translating these
problems in the language of quaternion orders. As these isogeny problems
are also somehow related to elliptic curve discrete logarithm problems [109],
Pizer hash function might be the most secure of all expander hash functions
so far for well-chosen parameters. However, Pizer hashes will probably never
move from an interesting theoretical construction to a function actually used
in practice. Indeed, the hash computation is rather slow and complex and it
is not clear whether an efficient key generation algorithm may be found.



Part III

Perspectives
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Chapter 8

Non-Malleability Property for
Hash functions

Expander hash functions are malleable. Given the hash value of a message
m it is possible to construct the hash value of a message that is related to
the previous one in some particular way. It is also possible to produce two
messages such that their hash values satisfy some particular relation. Those
properties do not necessarily contradict preimage nor collision resistance of
expander hashes in general, but they may induce security issues if they are
used in protocols that require hash functions with sufficient pseudorandom-
ness properties.

The security consequences of expander hash malleability properties differ
in applications. Collision resistance is a sufficient property when the hash
function is only used to compress data. On the other hand, if the hash is
used to destroy some mathematical structure (either known or unknown)
like in hash-then-sign or Fiat-Shamir signatures, security proofs typically
take place in the random oracle model. Security in the standard model
requires further (stronger) assumptions on the hash function and/or the other
protocol’s components, and may even require to modify the protocol, most
often at the cost of some efficiency.

Setting apart efficiency, collision resistant hash functions are sufficient to
build signature schemes and commitment schemes but not message authen-
tication codes and pseudorandom number generators.

The cryptographic community has been searching for good security def-
initions to replace the random oracle model, some of which are useful to
understand what properties expander hashes fail to satisfy. Two notions
of the literature are particularly relevant here, correlation intractable hash
functions and non-malleable hash functions. Correlation intractable hash
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functions [63] generalize collision resistance: not only should it be hard to
find two messages whose hash values are equal, but also to find two messages
whose hash values satisfy another relation.

The notion of non-malleability is well-understood in the context of encryp-
tion, commitments and zero-knowledge since the pioneering work of Dolev
et al. [94]. For hash functions, it has only recently received a formal treat-
ment by Boldyreva et al. [50]. Given a non-malleable hash function, it is
hard to construct the hash values of two related messages from one of these
hash values. In a sense, if a hash function is not correlation intractable it is
possible to manipulate its outputs while if it is not malleable it is possible
to manipulate its inputs. In both cases, it makes sense to parameterize the
definition by a class of relations, specifying which manipulation we want to
prevent with the definition.

In many protocols that only have a proof in the random oracle model,
correlation intractability or non-malleability requirements are easily seen to
be necessary. In some protocols like RSA signatures they also seem sufficient
but providing a meaningful definition of non-malleable hash function that
would give security guarantee for RSA signatures remains an open problem
today.

The malleability properties of a hash function, and in particular of ex-
pander hashes, may also prove useful if exploited cleverly. For instance,
Quisquater and Joye [221] used the associativity of the Zémor-Tillich hash
function in a protocol identifying video sequences and Lyubashevsky and
Micciancio [171] used the linearity of SWIFFT to build an asymptotically
efficient digital signature scheme. Some applications of the more requiring
incremental hash functions [35, 36, 38, 209] also generalize to Cayley hashes.

At the light of existing provably secure hash functions (including expander
hashes), malleability seems to be a necessary price for enjoying an efficient
“proof” of collision resistance. Number theoretic and other mathematical
problems have strong algebraic structures, which unavoidably induce some
malleability properties. Reasonably non-malleable hash functions can cer-
tainly be constructed with pseudorandom number generators, which can be
based on one-way functions and hence on number-theoretic problems. How-
ever, the resulting constructions are very inefficient. As often in Cryptology,
efficiency and security seem to be contradictory here.

Perfectly one-way hash functions [61, 64] are a first step towards designing
all-purpose hash functions from collision resistant hash functions. However,
these functions can still be malleable and they are probabilistic, which may
lead to some practical issues. The non-malleable hash function construction
of [50] uses a perfectly one-way hash function and a simulation-sound non-
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interactive zero-knowledge proof of knowledge, hence it requires some “global
source of randomness” which again presents practical issues.

As efficient, all-purpose secure hash functions seem hard to design, other
approaches are possible. Anderson [27] has stressed that protocol designers
should be more explicit on the properties they require for the hash functions
they use (rather than just modeling the hash function as a random oracle).
Some protocols may only require collision resistance and non-malleability
with respect to additive relations, in which case the Zémor-Tillich hash func-
tion could be a safe choice. In Chapter 9, we will present a semi-provable
hash function based on Zémor-Tillich, which is provably collision resistant
but which also (heuristically) satisfies pseudorandomness properties as good
as dedicated hash functions like SHA.

This chapter examines the positive and negative consequences of the mal-
leability properties of expander hashes. We do not claim any original contri-
bution here, but rather an interesting and necessary literature review around
the applicability of malleable hash functions in cryptography. We focus on
expander hashes of course, but most observations here are also relevant to
other provable hash functions.

In Section 8.1, we describe the malleability properties of expander hashes
and we identify the applications that can or cannot use expander hashes. In
Section 8.2, we give correlation intractability and non-malleability definitions
and show that they can help capturing the malleability of expander and
Cayley hashes. In Section 8.3, we show how malleability properties can
be exploited as an (efficiency) advantage and we conclude the chapter in
Section 8.4 .

8.1 (In)security of protocols with malleable

hash functions

8.1.1 Malleability of expander and Cayley hashes

We briefly recall the malleability properties of expander and Cayley hashes
described in Section 4.2.7. By construction, for any messages m,m′ it is
possible to compute the hash value of m||m′ from the hash value of m without
even knowing m, by using the neighbor ordering function. Moreover for
Cayley hashes, the associativity of the group’s law implies that for any initial
point g0 and messages m and m′, we have

H(m||m′) = H(m) · g−1
0 ·H(m′)
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where · represents the group operation. In particular, if g0 is the identity
then

H(m||m′) = H(m) ·H(m′).

8.1.2 Insecure protocol-hash associations

Cryptographic schemes using hash functions as a source of pseudorandomness
should not be implemented with a malleable hash function. Key derivation
and pseudorandom number generation algorithms that are secure in the ran-
dom oracle model clearly become insecure with a malleable hash function.
An auction protocol may be implemented in the random oracle as follows:
each auctioneer commits to a price m by revealing H(m); after everybody
has committed, the prices are revealed by the auctioneers. Now suppose
that only two auctioneers are competing. If a Cayley hash is used and the
first auctioneer has already committed by H(m), the second auctioneer can
propose H(1||m): he is then ensured to win the auction (although he does
not even know the price 1||m he has committed to before the first auctioneer
reveals his price).

Anderson first observed that many protocols are insecure with hash func-
tions that have some malleability properties, even if they are collision resis-
tant [27]. As simplest examples, he introduced the notions of complemen-
tation resistance, addition resistance and multiplication resistance. A hash
function H is complementation resistant if it is hard to produce two messages
m and m′ such that H(m)⊕H(m′), it is addition resistant if it is hard to pro-
duce three messages m1,m2,m3 such that H(m1) +H(m2) = H(m3), and it
is multiplication resistant if it is hard to produce three messages m1,m2,m3

such that H(m1) · H(m2) = H(m3). Complementation freedom hash func-
tions may be useful in schemes built on DES algorithm [9]; multiplication
freedom is definitely necessary in multiplicative homomorphic schemes like
RSA signatures (see Section 8.1.4). Similarly, many other cryptographic
schemes (Schnorr, DSS,...) implicitly rely on non-classical assumptions on
the hash functions they use. The Fiat-Shamir transform (Section 2.6.2) is not
sound in general: there exists a three round authentication scheme, which
does not give a secure signature scheme when Fiat-Shamir is applied to it
with any efficient hash-function [119].

8.1.3 Secure protocol-hash associations

If many protocols rely on the random oracle model, there exist also many
protocols that only need a universal hash function and/or a collision resis-
tant hash function. As mentioned in Section 2.6.2, signature schemes can be
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constructed from one-time signatures schemes hence from collision resistant
hash functions and universal one-way hash functions. The signature scheme
in [199] relies on a particular non-malleability assumption on the hash func-
tion; the commitment scheme in [127] needs a collision resistant hash function
and an universal hash function. The encryption scheme of Bellare and Ro-
gaway [41] is secure with perfectly one-way hash functions [61]. HMAC is a
PRF if its compression function is a PRF [32]. Alternatively, Fischlin [102]
showed that HMAC and NMAC are secure MAC (see Definition 2.12) if the
compression function is non-malleable in the sense of Definition 8.3 below.

8.1.4 An open problem: full-domain RSA signatures

Among protocols that are secure in the random oracle model, some are inse-
cure in the standard model [63, 119] and others are secure under additional
assumptions on the hash function [199, 127, 32, 102]. However, the security
of many protocols among the most standard ones remains an open problem.
In this section, we briefly discuss the case of full-domain RSA signatures,
whose security in the standard model has been challenging cryptographers
for years.

Full-domain RSA signatures are constructed from RSA signatures with
the hash-then-sign paradigm. In RSA signatures, the key generation al-
gorithm produces an RSA modulus n and a pair (d, e) such that de =
1 mod ϕ(n). The public key is (n, e) and the private key is d. Given a
message m ∈ [2, n − 2], its signature is σ := md mod n, and the signa-
ture verification amounts to checking whether σe = m. Given a message
m ∈ {0, 1}∗, a hash function H and its key s, the full-domain RSA signature
of m is σ := H(s,m)d.

In this signature scheme, the hash function is used to extend the domain
but also to destroy the algebraic structure of the RSA group Z∗n. It is easy
to list properties of the hash function that are necessary for the security of
RSA signatures, but on the other hand it seems very hard to prove that these
properties are sufficient. Intuitively, the full-domain RSA signature scheme
looks as follows to the attacker:

m −→ H(s,m) = σe ←− σ = H(s,m)d.

The scheme seems secure because both computing e-roots modulo n and
inverting the hash function are hard problems: to produce a forgery (m,σ =
H(s,m)d) an attacker seems to be required to solve the first problem if he
starts from a message and the second problem if he starts from a signature.

The homomorphic properties of modular exponentiation make things
harder. Even if it is hard to compute e-roots in general, the e-roots of 0
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and 1 are 0 and 1 and it is possible to combine various e-roots into a new
one: if hi = σei then for any integers αi, (

∏
hαii ) = (

∏
σαii )e. If no additional

condition is put on the hash function, the scheme looks more as follows to
the attacker:

m
−→

H(s,m) = σe
←−
99K

σ = H(s,m)d.

To prove the security of full-domain RSA signatures, additional conditions
are required both on the hash function and on the RSA group. At least,
preimages of 0 and 1 must be hard to compute and it must be hard to
compute mi and αi such that hi := H(s,mi) satisfy

∏
hαii = 1. In this

case, all the strategies exploiting the evident algebraic structure of the RSA
group would fail and the attacker’s view of the forgery problem would look
as follows:

m
−→
L99

H(s,m) = σe
←−
99K

σ = H(s,m)d.

Now, no trivial breaking strategy would be successful but there may exist
other attacks. It seems necessary to require that there exists no other way
to “go from the middle to the right”, an hypothesis that can be formalized
by a “knowledge of exponent” type assumption on the RSA group [125, 39].

When we keep working with informal definitions, this set of assumptions
seems sufficient for the security of full-domain RSA signatures. However,
formalizing these intuitions proved to be a difficult task and we had to leave
it as an open problem. The first issue we faced was of course to provide
meaningful (non)-malleability definitions.

8.2 Non-malleability definitions

Providing good definitions of non-malleable hash functions is an important
problem both to prove the security of many protocols in the standard model
and to characterize which properties expander hashes fail to satisfy. Two
definitions from the literature are especially relevant: correlation intractabil-
ity [63] and non-malleability [50].

8.2.1 Canetti et al.’s correlation intractability

Correlation intractability appeared in the milestone paper where Canetti et
al. [63] proved that random oracles do not exist; it extends a definition of
Okamoto [199] and was informally sketched by Anderson [27]. Correlation
intractability extends the notion of collision resistance; it is defined with
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respect to evasive relations, which are relations between inputs and outputs
of a random oracle which are satisfied only with a negligible probability.

Definition 8.1 Let lin, lout : N → N be length functions of the security pa-
rameter. A relation R : ({0, 1}lin×{0, 1}lout)N → {0, 1} over N input-output
sequences is evasive with respect to (lin, lout) if for any PPT algorithm A, the
probability

AdvEv,AR (n) := Pr
[
ExpEv,AR (n) = 1

]
is negligible, where ExpEv,AR is defined below.

Experiment ExpEv,AR (n):

- a function O : {0, 1}lin(n) → {0, 1}lout(n) is ran-
domly selected;

- the adversary A has an oracle access to O: he
sends queries mi ∈ {0, 1}lin of his choice and re-
ceives the corresponding O(mi);

- the adversary A outputs a tuple (m1, ...,mN) ∈
({0, 1}lin(n))N ;

- ExpEv,AR = 1 if R(m1,O(m1), ...,mN ,O(mN)) = 1.

A hash function is correlation intractable with respect to an invasive rela-
tion R if it is hard to compute inputs that together with their corresponding
hash values satisfy the relation.

Definition 8.2 A hash function H := (Gen,H) is correlation intractable
with respect to an invasive relation R : ({0, 1}lin × {0, 1}lout)N → {0, 1} over
N input-output sequences if for any PPT algorithm A, the probability

AdvCI,R,AH := Pr
[
ExpCI,R,AH = 1

]
is negligible, where ExpCI,R,AH is defined below.
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Experiment ExpCI,R,AH :

- a key s is generated by running Gen on input 1n;

- the key s is given to the adversary A;

- the adversary A outputs a tuple (m1, ...,mN) ∈
({0, 1}lin(n))N ;

- ExpCI,R,AH = 1 if
R(m1, H(s,m1), ...,mN , H(s,mN)) = 1.

The notion is limited to evasive relations to discard relations that can even
be satisfied with random oracles. A hash function is correlation intractable if
it is correlation intractable with respect to all invasive relations. Canetti et
al. [63] showed that random oracles are correlation intractable hash functions
and that correlation intractable hash functions do not exist, therefore showing
that random oracles do not exist.

Definition 8.2 is meaningful when it is restricted to particular relations.
For example, Okamoto [199] proved the security of a signature scheme based
on correlation intractability with respect to multiplicative relations. The
malleability of expander hashes is captured by relations

R(m1, h1,m2, h2) = 1⇔ (m2 = m1||i) ∧ (h2 = θ(h1, i))

where θ is the neighbor ordering function (Section 4.2.1). The malleability of
Cayley hashes is captured by more general classes of relations, for example

R(m1, h1,m2, h2,m3, h3) = 1⇔ (m3 = m1||m2) ∧ (h3 = h1 · h2)

where · represents the group operator.

8.2.2 Boldyreva et al.’s non-malleability

Another non-malleability definition for hash functions has recently been pro-
posed by Boldyreva, Cash, Fischlin and Warinschi [51, 101, 102]. The defini-
tion is in the vein of non-malleability definitions for encryption, commitment
and zero-knowledge proofs of knowledge [94]. It involves a simulator act-
ing in an idealized experiment. Like in perfectly one-way hash functions, a
hash function here is a triple of PPT algorithms H = (Gen,H, V ), the hash
algorithm is probabilistic, and there is a verification algorithm.
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Definition 8.3 A hash function H = (Gen,H, V ) is called non-adaptive,
single-value non-malleable (with respect to the parameterized distribution χ,
function hint and a relation R) if for any PPT algorithm A there exists a
PPT algorithm S such that for any relation R ∈ R the difference

Pr[Expnmh-1,AH (n) = 1]− Pr[Expnmh-0,AH (n) = 1]

is negligible, where Expnmh-1,AH (n) and Expnmh-0,AH (n) are defined below.

Experiment Expnmh-1,AH (n):

- a key s is generated by run-
ning Gen on 1n;

- a message m is generated by
running χ on 1n;

- a hint hs on m is generated
by running hint on 1n and
m;

- the value h := H(s,m) is
computed;

- the values s, h and hs are
given to the adversary A;

- the adversary returns a
function T : {0, 1}∗ →
{0, 1}∗ and a hash value h∗;

- the value m∗ = T (m) is
computed;

- Expnmh-1,AH (n) = 1 iff
R(m,m∗) = 1 and h∗ 6= h
and V (s, x∗, y∗) = 1.

Experiment Expnmh-0,AH (n):

- a key s is generated by run-
ning Gen on 1n;

- a message m is generated by
running χ on 1n;

- a hint hs on m is generated
by running hint on 1n and
m;

- the values s and hs are given
to the simulator S;

- the simulator returns a mes-
sage m∗

- Expnmh-0,AH (n) = 1 iff
R(m,m∗) = 1.

From the hash value of a message m, but without this message, the ad-
versary A is required to provide the hash value of a message m∗ that is
related to m. The definition is parameterized by a distribution χ on the
hash function inputs reflecting the fact that the message may not follow the
uniform distribution, a hint algorithm revealing some side-information about
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the message m and a relation R. Definition 8.3 can be adapted to compres-
sion functions [102] and extended to adaptive adversaries seeing more hash
values [50].

Non-malleable hash functions can be constructed for a large class of re-
lations using perfectly one-way hash functions and simulation-sound non-
interactive zero-knowledge proofs of knowledge but they cannot be reduced
to one-way functions. The notion implies perfect one-wayness but it does
not imply one-wayness nor collision resistance [51].

The definition captures the malleability of expander hashes via the rela-
tion

R(m,m∗) = 1⇔ ∃m′ s.t. m∗ = m||m′

and the malleability of Cayley hashes through the relation

R(m1,m2,m
∗) = 1⇔ m∗ = m1||m2.

8.3 Positive uses of malleable hash functions

The expander hash design has many interesting properties but it also induces
inherent malleability. Section 8.1 has presented the security issues following
from the malleability of hash functions. In this section, we describe positive
applications of three kinds of malleable hash functions: the lattice-based FFT
hash function of Lyubashevsky et al. [172, 173] (see Section 3.3), incremental
hash functions and Cayley hash functions. Incremental hash functions [35,
36, 38, 209] are hash functions with an update algorithm Incr allowing the
update of a hash function if some message block is modified, with an update
cost ideally proportional to the amount of modification in the message.

The linearity of the FFT hash was used in [171] to construct a one-
time signature scheme. If H is the FFT hash, the key generation algorithm
generates a key s for the hash function and two values x, y. The public key
of the scheme is (s,H(s, x), H(s, y)), its secret key is (x, y), the signature of
a message m is σ := x ·m+ y and this signature is checked by verifying that
H(s, σ) = H(s, x) ·m+H(s, y). The signature scheme is provably secure and
asymptotically efficient [171].

Incremental hash functions were introduced in [35] for authenticating
messages that are sent to various persons with different headers, for re-
authentication of large data disks after small modifications to provide virus
protection, or for authenticating videos or more generally data that only
slightly changes with time. Expander and Cayley hashes are incremental
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hash functions restricted to some kinds of modifications. The first appli-
cation above may also use Cayley hashes and some non-Cayley expander
hashes; the second can certainly use Cayley hashes if partial hash values are
stored (this is done in [221] for the Zémor-Tillich hash function); the third
application however requires malleability properties that Cayley hash do not
possess.

The associativity of group laws makes parallel computation of Cayley
hashes particularly easy and efficient. Assuming long messages m0...mµ have
to be hashed and N computing units are available, the messages can be
decomposed into message blocks of length µ/N . Each block can then be
given to a different unit; the first unit computes H(m0...mµ/N) and the unit
i computes g−1

0 H(m(i−1)µ/N ...miµ/N−1). When all units are done, the hash
value of the full message may be computed with only N−1 group operations.

The interest of this property for hashing long messages cannot be over-
stated. Hardware computing machines and current and future multi-core pro-
cessors decrease computing time by adding parallel computing units. Merkle-
Damg̊ard-based hash functions including the SHA algorithms are not suited
to parallel architectures as they treat message blocks sequentially. Cayley
hashes support any degree of parallelism and are therefore well-prepared to
future changes in computer architectures.

Cayley hashes can be computed both sequentially and in parallel, a prop-
erty that really makes them unique. We point out that if many hash functions
submitted to the SHA-3 NIST’s competition propose a parallel mode of com-
putation, this mode actually results in a different function: the sequential
and parallel mode of computation do not give the same hash values. In some
protocols (server-clients protocols, RFID protocols), one party is willing to
afford some hardware expense to gain time efficiency while the other party is
less concerned by computation time and more by expenses. For these specific
applications, Cayley hashes would really be invaluable.

8.4 From malleable CRHF to all-purpose hash

functions

Like all provably secure hash functions, expander and Cayley hash functions
are malleable, a property that can be positively exploited (mainly for ef-
ficiency) but that may also induce security threats in protocols relying on
more than collision resistance. Following Anderson [27], we stress that proto-
cols designers should not just establish the security of their protocols in the
random oracle model but be more explicit about the properties they require
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from the hash function they use. Cayley hashes are malleable but (at first
sight) only with respect to some specific relations; they can a priori be used
in protocols requiring non-malleability with respect to other relations.

Simple additional design may be sufficient to remove the malleability
properties of a provably collision resistant hash function. Hash functions
built following the Merkle-Damg̊ard paradigm structurally suffer from key
extension attacks. The simple HMAC construction destroys this structure
and allows using them for message authentication codes. At a different level,
the compression function of most dedicated hash functions is made of a round
function iterated many times. The round function itself is very malleable
(and even not collision resistant) but the successive iterations remove all the
existing structure in the compression function.

The next chapter is dedicated to ZesT, a new hash function based on the
Zémor-Tillich hash function. ZesT uses the vectorial version of ZT hash (see
Section 5.5) with some additional design to remove all the existing structure
but without loosing provable collision resistance and the ability to paral-
lelize the computations. We believe that this design strategy synthesizes the
main advantages of the fully heuristical and the fully theoretical strategies,
and could prove useful to extend the application range of all provable hash
functions.



Chapter 9

ZesT: an all-purpose hash
function based on Zémor-Tillich

Provable hash functions, whose collision resistance relies on hard mathemat-
ical problems, are very appealing. Collision resistance is by far the most
important property that a hash function should satisfy. A mathematical
problem can be studied independently outside the cryptographic community
and the confidence in the collision resistance of the hash function may in-
crease with the understanding of the problem. However, existing provable
hash functions have a rich mathematical structure implying homomorphic
properties and weak behaviors on particular inputs. In general, provable
hash functions should only be used in applications requiring no more than
collision resistance.

On the other hand, hash functions are the Swiss army knives of cryptogra-
phy: they are supposed to possess a lot of functionalities for a lot of different
applications. In practice, it would be dangerous to publicize a collision resis-
tant hash function with certain weak behaviors because the function might
be (wrongly) used by engineers without any background in Cryptology. At
the light of existing proposals, provable hash functions seem therefore not
practical at all. However, the ZesT hash function presented is a provably
collision resistant hash function that suits all applications.

ZesT is Zémor-Tillich with Enhanced Security inside. It is essentially
the vectorial version of the Zémor-Tillich hash function (see Section 5.5)
iterated twice. As a result, ZesT preserves the provable collision resistance
of the Zémor-Tillich hash function but it also heuristically satisfies good
pseudorandom properties.

We argue that this approach is meaningful as it combines the main advan-
tages of the fully heuristical approach and the fully theoretical approach. Our
function has heuristic pseudorandom properties comparable to the heuristic

185
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pseudorandom properties of custom designed hash functions and it is more-
over provably secure with respect to the crucial notion of collision resistance.
It is also by far more efficient than any provably pseudorandom and collision-
resistant hash function could be. Besides, we point out that the same ap-
proach was chosen by Micciancio et al. in their NIST submission based on
SWIFFT.

ZesT has exciting flavors of provable security. Like the Zémor-Tillich
hash function, ZesT is collision resistant if and only if the balance problem
is hard and in particular if the representation problem is hard for the group
SL(2,F2n) and the generators A0 = (X 1

1 0 ) and A1 = (X X+1
1 1 ). According to

existing attacks (see Chapter 5), ZesT is provably preimage resistant, second
preimage resistant and collision resistant up to n/2 bits, for an output of 2n
bits.

For collision and second preimage resistance, the security of ZesT is
indeed of n/2 bits in the sense that attacks with this complexity exist and that
attacks with lower complexity would improve the resolution of the balance
problem. For preimage resistance, the actual security of ZesT seems to be
as large as 2n bits because the preimage attacks against the Zémor-Tillich
hash function do not generalize to ZesT. Besides, an informal reasoning on
the known weaknesses of Zémor-Tillich tend to assert the security of ZesT
as a MAC, and tests performed with Dieharder [5] provide a first positive
evidence for its pseudorandom behavior.

ZesT provides great recipes for many diets: it is really practical in a
wide range of applications. ZesT is provably secure, reasonably efficient in
software, about as efficient as SHA in FPGA and very compact in low area
ASIC implementations. ZesT algorithm only consists of XORs, SHIFTs
and TEST operations on bit vectors. This simplicity allows efficient imple-
mentations on a wide range of platforms, as well as software-assisted code
optimization.

At equivalent collision resistance security levels, ZesT is 10 times as slow
as SHA-1, 10 times as slow as SHA-256 and 4 times as slow as SHA-512 on
our 32-bit architecture evaluation platform. With the notable exception of
SWIFFT [172], this is comparable or better than other provably secure hash
functions, and fast enough for most software applications that are anyway
limited in speed by the poor efficiency of their asymmetric cryptographic
components. Moreover, the function would take full benefit of graphic accel-
erators with large data buses and instructions.

ZesT is particularly efficient in hardware. For high speed designs in
FPGA, first evaluations show that ZesT implementations may reach through-
put per slice ratios comparable to very optimized FPGA implementations of
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SHA-1 and SHA-2. On the other hand, the simplicity of ZesT allows trading
throughput for area with a lot of flexibility. Lightweight implementations of
ZesT are much smaller than lightweight implementations of currently used
hash functions. In particular, ZesT outperforms the lightweight implemen-
tation of SHA-1 presented in [99], the SQUASH implementation of [123] and
the implementation of the block cipher-based hash function DM-PRESENT-
80 presented in [98].

ZesT can be cut into small pieces. The function has inherited the par-
allelism of the Zémor-Tillich hash function. Unlike many hash functions
proposed for the NIST competition, the computation of ZesT in serial and
parallel modes gives the same result thanks to the inherent group structure
of the function and in particular to the associativity property. Besides, ad-
ditional parallelism can be exploited in software by using SIMD instructions
for computing the XORs of large bit vectors.

After appropriate preparation, ZesT sweetly fits into NIST’s cooking
pot. Despite its very interesting properties, ZesT hash function does not
completely fulfil standard requirements for hash functions like described in
NIST’s call [1]. However, slight modifications of the algorithm allow it to
reach these requirements.

ZesT as such is a keyed hash function that possesses some weak keys,
while a secure unkeyed version is necessary in many applications. This issue
is solved by an appropriate choice of default keys. ZesT’s collision resistance
is only the square root of the birthday bound, and its second preimage resis-
tance is not better than its collision resistance. The first issue is solved by
using the projective version of Zémor-Tillich instead of the vectorial version
in the second round of ZesT; and the second issue is solved by doubling the
parameters’ sizes in the first round. Finally, ZesT’s parameter n must be
prime to be protected against subgroup attacks while NIST required output
lengths of 224, 256, 384 and 512 bits. This issue can be solved either by
truncating or by extending the outputs by a few bits.

All these changes in ZesT’s recipe may influence its simplicity, its effi-
ciency and its security. Like tastes and colors this cannot be discussed. We
believe that the choice between one or another version of ZesT’s recipe will
depend on everybody’s personal taste for simplicity, efficiency, security and
conformity with NIST’s requirements. We present our favorite recipe but we
invite everybody to select their best personal choice of ingredients.

This chapter presents joint original work with Giacomo de Meulenaer,
Jean-Jacques Quisquater, Jean-Pierre Tillich, Nicolas Veyrat-Charvillon and
Gilles Zémor. The essence of ZesT’s recipe was published jointly with Nico-
las Veyrat-Charvillon and Jean-Jacques Quisquater [208] together with soft-
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ware implementation results and a first study of pseudorandom properties.
The vectorial and projective versions of Zémor-Tillich were proved secure in
collaboration with Jean-Jacques Quisquater, Jean-Pierre Tillich and Gilles
Zémor [207]. Hardware results were obtained with Giacomo de Meulenaer
and Jean-Jacques Quisquater [88] and a paper version of this chapter will
soon be published with all these people.

The chapter is organized as follows. Section 9.1 describes ZesT’s key
generation and hash algorithms. Sections 9.2 and 9.3 give provable and
heuristic security results on ZesT. Section 9.4 gives efficiency results for a
software optimized C code, a high-speed FPGA implementation and a low-
area ASIC implementation and it furthermore discusses additional implemen-
tations. Section 9.5 modifies the function to approach NIST’s requirements,
Section 9.6 discusses some alternative choices in the design’s parameters and
Section 9.7 concludes the chapter.

9.1 ZesT hash function

In this section, we describe the ZesT hash function. We start by recalling
the main issues in the Zémor-Tillich hash functions, then we successively
present ZesT’s hash algorithm and key generation algorithm.

9.1.1 Security issues with the Zémor-Tillich hash func-
tion

As discussed in Chapter 5, the Zémor-Tillich hash function is an interesting
hash candidate but it has major issues preventing its use as a general purpose
hash function. In particular, it is malleable (Section 4.2.7), invertible on small
messages (Section 5.3.1) and it has preimage, second preimage and collision
resistance security of n/2 bits instead of the ideal bounds of respectively 3n,
3n and 3n/2 bits.

9.1.2 ZesT hash algorithm

A binary polynomial Pn(X) and a vector ( a b ) ∈ F2
2n can be represented

as bit sequences of sizes n and 2n respectively. In this chapter, we will
often abusively identify a polynomial Pn(X) = Xn + pn−1X

n−1 + ...+ p1X +
p0 to its corresponding bit sequence pn−1...p1p0. Moreover, the elements
of F2n can be seen as polynomials of degree less than or equal to n − 1
once an irreducible polynomial has been fixed, hence the vector ( a b ) =
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( an−1Xn−1+...+a1X+a0 bn−1Xn−1+...+b1X+b0 ) ∈ F2
2n will be abusively identified to

the bit sequence an−1...a1a0bn−1...b1b0.

ZesT algorithm takes as entry a key made of an irreducible binary poly-
nomial Pn(X) and of a starting point ( a0 b0 ) ∈ F2

2n \ ( 0 0 ), and a bitstring
m = m0m1...mµ−1 of arbitrary length. We recall from Section 5.5.1 that
the vectorial Zémor-Tillich hash function on parameters Pn(X) and ( a0 b0 )
is defined by

Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m) := ( a0 b0 )HZT (Pn(X),m)

where HZT is the Zémor-Tillich hash function. The ZesT hash function is
defined by

ZesT(Pn(X)|| ( a0 b0 ) ,m) := Hvec
ZT (Pn(X)|| ( a0 b0 ) , (m||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m))) .

ZesT algorithm is made of two rounds of the vectorial Zémor-Tillich hash
function: after the first round, the intermediary result

( a b ) := Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m)

is seen as a bit sequence of 2n bits that are processed as a continuation of
the message bits.

9.1.3 ZesT key generation algorithm

The key of ZesT is made of an irreducible polynomial Pn(X) and of a vector
( a0 b0 ) ∈ F2

2n \ ( 0 0 ). Both elements are randomly chosen by the key genera-
tion algorithm: if the polynomial is fixed, collision resistance in the sense of
the definition of Section 2.2 cannot be reached: an adversary can simply store
a collision for the original Zémor-Tillich hash function to produce collisions
for any starting point ( a0 b0 ). On the other hand, if the starting vector is
not chosen randomly, the collision resistance of ZesT is no longer equivalent
to the collision resistance of the Zémor-Tillich hash function. In particular,
some keys are weaker than others, for example if the starting point is ( a aX )
for any a ∈ F∗2n .

If the person who generates the key is trusted, the degree of the polyno-
mial must be prime in order to avoid subgroup attacks against the Zémor-
Tillich hash function, and the starting vector must be chosen randomly
among all possible vectors for the reduction of Proposition 5.11 to hold.
If the person generating the key is not trusted, it is necessary to choose
the polynomial Pn(X) and the initial vector in a way that clearly discards
trapdoor attacks. This protection can be achieved by standard techniques,
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resorting either to universal constants like π or e, to a pseudorandom number
generator or to a cryptographic hash function H (which can even be ZesT
with some fixed key).

9.2 Security reduction for ZesT

ZesT has exciting flavors of provable security. Its collision, preimage and
second preimage resistances follow from the hardness of the balance problem
corresponding to the Zémor-Tillich hash function. In the remaining of this
chapter, we assume that the complexity of solving this problem is determined
by the best attack known so far which is the attack of Section 5.4.2.

9.2.1 Collision resistance

ZesT is collision resistant if and only if the balance problem corresponding
to the Zémor-Tillich hash function is a hard problem.

Proposition 9.1 There exists a PPT algorithm that breaks the collision re-
sistance of ZesT if and only if there exists a PPT algorithm that solves the
balance problem corresponding to the Zémor-Tillich hash function.

Proof: We show how to construct a collision for the vectorial Zémor-Tillich
with key Pn(X)|| ( a0 b0 ) from a collision for ZesT with the same parameters
and vice-versa; the result then follows from Proposition 5.11. Let (m,m′) be
a collision on ZesT: we have m 6= m′ and

Hvec
ZT (Pn(X)|| ( a0 b0 ) , (m||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m)))

= Hvec
ZT (Pn(X)|| ( a0 b0 ) , (m′||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m′))) .

The messages m||Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m) and m′||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m′)
collide for the vectorial version and are distinct. On the other hand, it is clear
that any collision on the vectorial version is also a collision on ZesT. �

The equivalence result of Proposition 9.1 is nearly tight. On one side,
a solution to the balance problem immediately gives a collision on ZesT.
On the other side, log2 n bits of security are “lost” from the vectorial to
the matrix version of Zémor-Tillich in the proof of Proposition 5.11. The
collision resistance of ZesT is not optimal as its output has 2n bits while
the collision attacks of Section 5.4 will find collisions for the vectorial version
of Zémor-Tillich in time 2n/2. In Section 9.5.3, we will suggest a modification
of ZesT that reaches optimal collision resistance.
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9.2.2 Preimage resistance up to the collision resistance
level

The preimage resistance of ZesT follows from the hardness of the balance
problem corresponding to the Zémor-Tillich hash function. We give here a
proof that provides a preimage resistance guarantee but only up the n/2 bits
of the collision resistance level.

Proposition 9.2 If there exists a PPT algorithm that breaks the preimage
resistance of ZesT, then there exists a PPT algorithm that solves the balance
problem corresponding to the Zémor-Tillich hash function.

Proof: The result is immediate as ZesT processes arbitrary-length bit se-
quences and it is collision resistant if the balance problem is hard (see [232],
Section 2.2.4 and Proposition 9.1). The informal argument is as follows. Sup-
pose there exists an efficient algorithm A computing preimages, then there
exists an efficient algorithm B that finds collisions: B chooses a random mes-
sage m, computes its hash value, gives the hash to A and receives m′ from
A. As each hash value has a lot of preimages on average, the messages m
and m′ are likely to be different hence to form a collision. �

The result is not tight as there does not currently exists any algorithm
able to compute preimages for ZesT in time 2n/2. Indeed, we argue in
Section 9.3 that the actual preimage resistance level of ZesT seems closer to
2n bits.

9.2.3 Second preimage resistance up to the collision
resistance level

The second preimage resistance of ZesT also follows from the hardness of
the balance problem corresponding to the Zémor-Tillich hash function.

Proposition 9.3 If there exists a PPT algorithm that breaks the second preim-
age resistance of ZesT, then there exists a PPT algorithm that solves the
balance problem corresponding to the Zémor-Tillich hash function.

Proof: Identical to the proof of Proposition 9.2. �

This result is tight as there exists an algorithm computing second preim-
ages in time 2n/2. Indeed, given a message m, there exists an algorithm com-
puting a preimage of ( a b ) := Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m) in time 2n/2: this al-
gorithm first computes a matrix M ∈ SL(2,F2n) such that ( a0 b0 )M = ( a b )
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and it then applies the preimage algorithm of Section 5.4 to M . To compute
a second preimage of ZesT, it suffices to give ( a b ) to this algorithm; as
ZesT processes arbitrary-length inputs the message m′ returned is likely to
be different from m. Moreover,

Hvec
ZT (Pn(X)|| ( a0 b0 ) , (m||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m)))

= Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m)HZT (Pn(X), Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m))

= Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m′)HZT (Pn(X), Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m′))

= Hvec
ZT (Pn(X)|| ( a0 b0 ) , (m′||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m′))) .

9.3 Other security aspects of ZesT

ZesT is Zémor-Tillich with Enhanced Security inside. In this section, we give
security properties of ZesT that cannot be proved based on the hardness of
the balance problem corresponding to Zémor-Tillich, but that still appear
very likely.

9.3.1 Output distribution

We argue that for long messages, the output distribution of ZesT is close to
uniform. Given a message m, ZesT outputs the value

Hvec
ZT (Pn(X)|| ( a0 b0 ) , (m||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m)))

= Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m)HZT (Pn(X), Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m))

which can be seen as the result of two consecutive walks determined by the
bits of m and of ( a b ) := Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m). Although no good bound
is known on the eigenvalues of ZT , convergence of random walks is guar-
anteed in these graphs hence also in ZT vec graphs (see Sections 5.2 and
5.5.3). For long messages, the uniform distribution of ( a b ) follows from
the expanding properties of ZT and ZT vec graphs. The second walk of
2n bits performed from ( a b ) should not affect this distribution because the
bits of Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m) are expected to be reasonably random and
independent of those of m. Under this independence assumption, the out-
put distribution of ZesT on long messages is provably close to the uniform
distribution.

9.3.2 Preimage resistance

The preimage resistance of ZesT is much better than the n/2 bit security
that can be proved based on the hardness of the representation problem.
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As preimages of the first round can be computed in time 2n/2, we may try
to fix the value h′ after this first round and to recover the message with
this additional constraint. However, finding an h′ value that may satisfy the
equation h = h′HZT (Pn(X), h′) when h is given seems to be a hard problem,
that cannot be solved faster than by exhaustive search methods.

A preimage on ZesT implies a preimage on Hvec
ZT in the second round that

has the form m||Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m). The preimage algorithm of Sec-

tion 5.4.3 can be easily modified to compute some kinds of particular preim-
ages on the vectorial version. For example, there exists an algorithm finding
preimages that start and end with some given constant bitstrings. However,
computing preimages of the form m||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m) faster than by
exhaustive search seems to be out of reach.

The preimage attacks of Section 5.4.3 cannot be extended to messages of
the form m||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m). For generic messages, we could con-
catenate various messages colliding for the projective version into a collision
for the vectorial version. The approach does not work here because the con-
catenation of two messages of the form m||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m) is not a
message of the form m||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m) in general.
For generic messages, we could also follow a “meet-in-the-middle” strat-

egy to get preimages at the price of collisions. In the second round of
ZesT, this approach is no longer possible because of the redundancy be-
tween the left-most and the right-most bits of the message that is given
to the second round. More generally, it seems impossible to exploit the
mathematical structure of ZesT (in particular the associativity of the ma-
trix product) to improve generic preimage attacks against the second round
because of the redundancy introduced between the bits of m and those of
Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m).

The actual preimage resistance of ZesT is therefore of 2n bits, hence
much better than the n/2 bits security obtained from the hardness of the
balance problem. For applications that only require 60 bits of preimage
resistance (without requiring collision resistance), parameters as small as
n = 31 will therefore be safe.

9.3.3 Issues in Zémor-Tillich that are removed in ZesT

ZesT does not present any apparent malleability property nor any apparent
predictable behavior contradicting the intuition of pseudorandomness.

Unlike Zémor-Tillich and its vectorial variant, ZesT cannot be inverted
on short messages. In these functions, the invertibility comes from the ab-
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sence of modular reductions when the message size is only slightly larger than
n. The issue is removed in ZesT because at least 2n bits are hashed in the
second round.

ZesT is not malleable. As an example, let us consider a simple mal-
leability issue of Hvec

ZT that is a relation between the hash values of m and
m′ = m||0:

if Hvec
ZT (m) = h1||h2 then Hvec

ZT (m′) = (h1X + h2)||h1.

We point out that the malleability of the vectorial Zémor-Tillich is limited to
addition and/or suppression of bits on the right side of unknown messages.
In particular, it is not possible to modify a hash value according to a change
in the middle bits of an unknown message.

Let us now consider ZesT(m) = Hvec
ZT (m||Hvec

ZT (m)). Although they are
strongly correlated, the hash values Hvec

ZT (m) and Hvec
ZT (m′) differ in many

middle bits in general, so ZesT(m) and ZesT(m′) are completely uncor-
related. Of course, there exist some particular values (m,m′) such that
Hvec
ZT (m) and Hvec

ZT (m′) are very close, for example differ by only the last bit,
but finding such a pair without inverting Hvec

ZT already seems a hard problem.
Moreover, any such m and m′ that we could find would differ in many bits,
so again ZesT(m) and ZesT(m′) would be completely uncorrelated.

In Section 9.5.2 below, we provide further evidence that ZesT has no
apparent weakness, based on analysis carried out with the pseudorandom
tests of the Dieharder [5].

9.3.4 Security as a MAC

ZesT can be used as a message authentication codeMZesT = (Gen,Mac, V er).
The Gen and Mac algorithms of MZesT are just the key generation and
the hash algorithms of ZesT. Of course, the key remains secret here, and it
is important that both elements Pn(X) and ( a0 b0 ) remain secret. On input
(s,m, t), the verification algorithm simply checks whether t = ZesT(s,m).

MZesT is essentially HMAC used with the vectorial version of the Zémor-
Tillich hash function. Although the weaknesses of this last function are
not present in the functions usually employed with HMAC, we argue that
MZesT is a secure MAC algorithm.

Key recovery againstMZesT seems to be a hard problem. A ZesT key
is made of two components, an irreducible polynomial Pn(X) and an initial
vector ( a0 b0 ). We argue that recovering the whole key has a cost 22n even if
the polynomial Pn(X) can be recovered in time 2n.
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Let us first suppose that the polynomial Pn(X) is not known to the adver-
sary. If the adversary knew the initial vector ( a0 b0 ), he could easily recover
Pn(X) as follows. The adversary would send the void message to the Mac
algorithm and receive an answer which equals Hvec

ZT (Pn(X)|| ( a0 b0 ) , ( a0 b0 )).
The adversary could also compute the hash value by itself without performing
the reductions and subtract the hash value returned by the Mac algorithm
to obtain a vector ( a b ) ∈ F2[X]. The polynomial Pn(X) would be an ir-
reducible factor of gcd(a, b) with degree n. If needed, the adversary would
make an additional query to the Mac algorithm to discriminate between
alternative possible factors of degree n.

If the adversary does not know the initial vector, he can still recover the
polynomial Pn(X) with 2n MZesT queries as follows. After 2n queries, the
adversary is likely to find two messages with the same MAC value. With
a probability of about 50%, these two messages provide a collision (m,m′)
on the vectorial version of Zémor-Tillich. The adversary then computes the
Zémor-Tillich hash values M,M ′ of m and m′ without performing the mod-
ular reductions. The polynomial Pn(X) is an irreducible factor of degree n
of det(M + M ′). As this determinant may have more than one polynomial
factor of degree n and as the adversary does not know whether the collision
he obtained for the MAC was a collision for the first round, he needs a few
MAC collisions to identify the right polynomial.

Let us now suppose that the polynomial Pn(X) is known to the adversary
who wants to recover the initial vector. From messages mi of his choice and
the corresponding hash values hi := ZesT(Pn(X)|| ( a0 b0 ) ,mi), the adver-
sary tries to recover ( a0 b0 ). This is equivalent to finding any ( ai bi ) such that
( ai bi ) = Hvec

ZT (Pn(X)|| ( a0 b0 ) ,mi) because ( a0 b0 ) = ( ai bi ) (HZT (Pn(X),mi))
−1.

The task of the adversary now consists in solving the equation

( ai bi )HZT (Pn(X), ( ai bi )) = hi

for one of the hi. Solving this equation seems hard because of the redundancy
in the unknown; the preimage attack of Section 5.4.3 does not extend to this
case. We believe that when the polynomial is known, the adversary cannot
recover the initial vector faster than in time 22n.

Message-extension attacks against MZesT are defeated by the second
round of ZesT. These attacks are possible for any iterative hash function, in
particular all Merkle-Damg̊ard-based hash function and all expander hashes.
The attack is prevented in ZesT in exactly the same way as in the HMAC
construction: the second round destroys the block structure and prevents the
adversary from having access to the result of an iterative hash function.

Forging MZesT seems to require 2n MAC queries plus a computation
time 2n/2. As soon as the polynomial Pn(X) is known by the adversary, a
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forgery for this MAC is feasible in time 2n/2: the forger can compute a col-
lision (m,m′) for the Zémor-Tillich hash function, query the Mac algorithm
on m to receive t, and return (m′, t) as a valid forgery. When the polynomial
is not known, the adversary cannot compute collisions for the Zémor-Tillich
hash function. Moreover, its oracle access to MZesT does not help it to
attack the Zémor-Tillich hash function as he only accesses the output of the
second round. The malleability of the first round is not useful either to the
adversary for the same reason. We have found no forgery algorithm faster
than our best partial key recovery algorithm on Pn(X) followed by a collision
attack on the Zémor-Tillich hash function.

The trapdoor attacks and weak keys issues present in ZesT do also affect
MZesT. However, when the key generation algorithm is not trusted, the
techniques sketched out in Section 9.1.3 to protect ZesT will also protect
MZesT.

9.3.5 Connections with HMAC and other iterative de-
signs

The design of ZesT is inspired by HMAC and by traditional block cipher
and compression function designs: the mathematical structure remaining af-
ter the first round of ZesT is destroyed in its second round. However, most
existing security results on HMAC assume hypotheses on the hash function
that are clearly not satisfied by the vectorial Zémor-Tillich hash function,
and block ciphers and compression functions usually have much more than
just two rounds. The collision resistance of ZesT is guaranteed with a single
round; a second round is necessary to obtain “extra” pseudorandom proper-
ties; the second round is also sufficient because the round function is already
very strong.

ZesT looks very similar to NMAC and HMAC (Section 2.6.1). The col-
lision resistance transfers from the vectorial Zémor-Tillich hash function to
ZesT, exactly like in these constructions. On the other hand, existing secu-
rity results on the pseudorandom and MAC security of HMAC and NMAC
cannot be used for ZesT. NMAC and HMAC were built for iterative hash
functions whose compression functions have no apparent weaknesses. In con-
trast, the vectorial version of Zémor-Tillich is highly malleable and any “com-
pression function” we could define from it by fixing a block size would also be
malleable. In particular, this compression function would definitely not be
pseudorandom nor a secure fixed-length MAC. Unlike its collision resistance,
the pseudorandomness of ZesT follows from the iteration and not from the
single rounds.
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The iterative design of ZesT also appears in many block ciphers and in
compression functions, typically with 16 to 64 rounds. In contrast, ZesT
only has 2 rounds. Block ciphers or traditional hash functions would become
invertible if their round number was decreased. In contrast, a single round of
ZesT is already preimage and collision resistant because it is a whole hash
function and it is therefore much stronger than the simple components used
in block ciphers and compression functions.

9.4 Efficiency of ZesT

ZesT provides great recipes for many diets: it is really practical in a wide
range of applications. We describe software implementations in Section 9.4.1,
FPGA implementations in Section 9.4.2 and lightweight implementations in
Section 9.4.3. Finally, we show in Section 9.4.4 how to exploit in ZesT the
inherent parallelism of the Zémor-Tillich hash function.

For FPGA and lightweight implementations, we will base our performance
estimations on the implementations in [88] of the function introduced in [208].
This function, that we will call ZT ′ in this thesis, is very similar to ZesT.
The only difference is the introduction of an XOR by a constant between the
first and the second round:

ZT ′ (Pn(X)|| ( a0 b0 ) ,m)

:= Hvec
ZT (Pn(X)|| ( a0 b0 ) , (m||Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m)⊕ c)) .
(9.1)

The constant c is equal to the binary representation of pi in [208].

9.4.1 Efficiency of ZesT in software

ZesT recursively uses a very simple operation on a state ( a b ). Depending
on the next message bit, the state is updated to ( a b )A0 = ( aX+b a ) or
to ( a b )A1 = ( aX+b aX+b+a ) = ( aX+b (aX+b)+a ). After processing all the
message bits, the result is seen as a bitstring and processed in turn. Messages
of µ bits therefore require to process µ+ 2n bits for the first and the second
rounds together.

The arithmetic is in a field of characteristic 2 and is thus very efficient.
In our C implementation on a 32-bit architecture, we represent an element
a = an−1X

n−1 + an−2X
n−2 + ...a1X + a0 as an array A of L := d n

32
e integers

(L := d n
64
e in 64-bit architectures). An addition requires only L XORs, and

a multiplication a by X requires L SHIFTs by one bit and one polynomial
modular reduction. The operations aX + b and aX + a can be performed
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with L SXORs and a modular reduction. The polynomial reduction in the
computation of aX + b can be done by testing the left-most bit of a: if this
bit is equal to 1, we need L XORs operations of the bits of aX + b with the
bits of Pn(X). For long messages, the TEST instruction will return 1 half
of the times.

Let t0 and t1 be the average times needed respectively to process a bit 0
and 1, let tXOR and tSXOR be the times needed to perform a word XOR and
SXOR, and let tTEST be the time needed to perform a TEST instruction.
According to our analysis, t0 and t1 are respectively

t0 = LtSXOR +
L

2
tXOR + tTEST + C0,

t1 = LtSXOR +
3L

2
tXOR + tTEST + C1.

where C0 and C1 are constant overhead times. If we neglect the TEST
instruction and the overhead times and if we approximate tSXOR ≈ tXOR,
processing one bit requires on average 2LtXOR instructions. The total time
needed to evaluate the ZesT hash value of a message of length µ is therefore

2(µ+ 2n)LtXOR.

For long messages, this time is essentially proportional to the message length
and inversely proportional to the architecture size.

ZesT can be cut into small pieces; it is very scalable to any granularity.
Implementing ZesT on an 8-bit processor or on the other hand on a graphical
accelerator with a 512-bit data bus is just as easy as implementing ZesT
on standard 32 or 64-bit processors, and the implementation speed will be
directly proportional to the architecture size. If the architecture is larger
than n, ZesT only requires two XORs per message bit, plus 4n XORs for
the second round.

ZesT algorithm was implemented in C to get running time estimations
for various parameters sizes. All tests were performed on a 64-bit Intel Xeon
E5420 2.5GHz 16Go DDR2 Ram. The OS was Debian using 32-bit kernel
2.6.26. Test vectors for performance evaluation were 500Mo random files
generated using /dev/urandom. The values chosen for the parameter n were
the smallest primes smaller than 32, 64, 128, 160, 224, 256, 384, 512 and 1024,
and for each n a random polynomial of degree n was selected for Pn(X).

Performance results are presented in Table 9.1. The results differ signif-
icantly from the above analysis. First, the analysis seems to become valid
only for large values of the parameter n. This may be due to various over-
heads, in particular to for loops present in the code for scalability reasons
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that should better be unrolled for short parameters. Second, we observe
that ZesT-61 and ZesT-251 are respectively more efficient than ZesT-31
and ZesT-157: this might be due to the subjacent 64-bit architecture of our
evaluation platform and to scalability options taken in our code.

In Table 9.2, the performances of ZesT are compared to the SHA algo-
rithm evaluated with the sha1sum, sha256sum and sha512sum functions of
the linux kernel. At comparable collision resistances, ZesT-127, ZesT-251
and ZesT-509 are respectively 10, 10 and 4 times less efficient than SHA-
1, SHA-256 and SHA-512. At comparable preimage resistances (which is
2n bits for ZesT), ZesT-127 and ZesT-251 are respectively 7 and 2 times
less efficient than SHA-256 and SHA-512. If we only rely on the n/2 “prov-
able” bits of preimage resistance, then at comparable preimage resistances,
ZesT-509 and ZesT-1021 are respectively 17 and 7 times less efficient than
SHA-256 and SHA-512.

Table 9.1: Estimated running time (seconds) of ZesT on a 500Mo file with
parameters of various sizes on a 2.5GHz 32-bit architecture, and correspond-
ing cycles/byte

ZesT Time (s) (cycles/byte)

ZesT-31 40.3 210
ZesT-61 31.3 163
ZesT-127 40.3 210
ZesT-157 61.9 322
ZesT-223 72.5 377
ZesT-251 60.1 313
ZesT-383 77.9 405
ZesT-509 97.2 505
ZesT-1021 173.5 902
ZesT-2039 331.7 1725

Table 9.2: Comparison of SHA and ZesT at the same collision resistance
levels

CR SHA (cycles/byte) ZesT (cycles/byte)
≈ 264 SHA-1 19 ZesT-127 210
≈ 2128 SHA-256 30 ZesT-251 313
≈ 2256 SHA-512 136 ZesT-509 505
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The basic algorithm described above can be improved by grouping the
computation of consecutive message bits. As an example, let us consider the
process of two consecutive bits: depending on these two bits, the state (a, b)
is updated to

(a, b)A0A0 = (aX2 + bX + a, aX + b),

(a, b)A0A1 = (aX2 + bX + a, aX2 + aX + bX + a+ b),

(a, b)A1A0 = (aX2 + aX + bX + a+ b, aX + b),

(a, b)A1A1 = (aX2 + aX + bX + a+ b, aX2 + bX + a).

The last product can be computed by computing first aX + b, then (aX +
b)X + a = aX2 + bX + a and finally (aX2 + bX + a) + (aX + b). The cost
of this sequence of instructions is 2 XORs and 1 SXOR (plus the polynomial
reductions). The trivial “one bit at once” implementation computes aX + b
and (aX+ b) +a then (aX+ b)X+ (aX+ b+a) and ((aX+ b)X+ (aX+ b+
a))+(aX+b) hence it requires an additional SXOR. This simple observation
leads to a speedup of 25% for one fourth of the 2-bit sequences.

The idea of matrix grouping is easily generalized to larger bit sequences
with the help of code-generation programs. More specifically, a program can
be written that

• Computes the vector-by-matrices product;

• Looks for the best data paths with respect to the operations a→ aX,
(a, b)→ aX + b and (a, b)→ a+ b;

• Selects the very best data path according to an optimization function
including the computation times of individual operations and the num-
ber of registers needed in a C implementation;

• Writes an optimized C code computing the products.

The ZesT algorithm is so simple that code-generation programs may
be easily tuned to any computer architecture and may also include more
elaborate grouping strategies, for example based on Huffman coding.

Finally, we point out that the performances of ZesT will be greatly im-
proved by using the multimedia sets of instructions available on modern
processors.

9.4.2 FPGA implementation

In this section, we describe high-speed implementations of ZesT on FPGA.
These implementations are of interest in applications where several messages
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are to be hashed and a high throughput is required, such as for virtual
network servers. The throughput per area metric makes sense here since the
goal is to jointly minimize the execution time and the area: if the throughput
of the resulting implementation is too low, any superior throughput can be
reached by simply gathering several identical circuits.

The main feature of ZesT is that it considers the bits of the message one
after the other. The dependency between the intermediary results of the hash
function suggests an iterative architecture where the message is processed one
bit at the time. The efficiency can be improved by processing s consecutive
bits at each step, i.e., by partially unrolling the main loop. The optimal value
for s (the unroll factor) is determined empirically. When processing one bit of
the message, the bits of the two entries a and b of the matrix can be efficiently
computed in parallel. Indeed, the operations involved in the hash function
are simple: they essentially consist in XOR operations between two or three
operands and 1-bit left shifts. These bitwise operations allow computing the
bits of a and b in parallel without decreasing the frequency, which would
not be the case it there was a carry propagation for instance. The parallel
approach is better than the serial one: the latter alternative would involve
a wordwise processing and would therefore require extra control logic to
select and route the appropriate words during the execution of the function,
resulting in a lower throughput per slice efficiency.
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Figure 9.1: FPGA architecture for ZT ′ proposed in [88]

Figure 9.1 presents the architecture proposed in [88] for ZT ′ which is
essentially ZesT with an additional XOR between the first and the second
round (see Equation 9.1). It is made of a central core processing one bit
of message, and of storage elements. The core can be replicated s times in
order to process s consecutive message bits. Each of these bits, mi with
0 < i < s− 1, comes from a w-bit shift register denoted d containing a word
of the message to hash. The partial results are stored in two n-bit registers,
denoted a and b, and are used as inputs when processing the next s bits of
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the message. They loop in the circuit until the end of the message is reached,
then they are loaded in the block ram (BRAM) and are reused as if they were
the continuation of the message in the final phase.

The BRAM also stores the message, denoted m, and the constant c (pi
binary representation) by words of w = 32 bits. The two output ports of the
BRAM are connected to a w-bit XOR that is used to implement the function
σ, i.e., the XOR operation with c preceding the final phase. Before the final
phase, zero is outputted in place of c to correctly route the words of m to
the core of the circuit through the w-bit XOR gate.

The circuit described in Figure 9.1 processes s bits of the message per
clock cycle. The throughput achieved can be approximated by the product
of the frequency and s if the processing of the final phase is negligible. This
is valid for sufficiently long messages with respect to the 2n additional bits of
the final phase. In the following of this section, we assume that the messages
fulfill this condition.

The parameter s must be properly chosen in order to maximize the
throughput per slice. A small s ensures a large operation frequency together
with a small occupied area. Increasing s is interesting in the sense of the con-
sidered metric, since it is proportional to the throughput of the circuit while
being proportional only to the core (as defined in Figure 9.1) which is only
a fraction of the required area. However, increasing s adds logic operators
to the longest path, resulting in a lower maximum operating frequency. The
optimal value of s was therefore determined by an empiric study (Table 9.3).

Table 9.3: Implementation results of ZT ′-127 in function of the s, the number
of message bits processed per clock cycle

s parameter Area Frequ. Through. Through./Area
[Slices] [MHz] [Mbits] [Mbits / Slice]

1 262 220 220 0.84
2 377 215 430 1.14
3 515 185 555 1.08
4 596 170 680 1.14
5 597 160 800 1.34
6 647 130 780 1.21
7 794 120 840 1.06
8 901 110 880 0.98

The function ZT ′ was implemented on the Xilinx Virtex-2 XC2V2000-6.
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Synthesis and place and route were performed with ISE 8.2 and testing and
debugging with Modelsim SE 6.1. The first implementation results deter-
mined the optimal value for s, the number of message bits processed per
clock cycle: the highest throughput per slice was obtained with s = 5 for
n = 127, 251 and 509. Implementation results for these parameters are given
in Table 9.4. The impact of n on the frequency is moderate as increasing
n does not add logic operators to the longest path (as s does). The small
frequency drop is likely due to larger routing delays. On the other hand, the
area may be approximated by a linear function of n:

Area = 3.3n+ 200.

The area is nearly proportional to n as the only constant parts of the circuits
are the control logics and the BRAM.

Table 9.4: Implementation results for ZT ′ with s = 5

n Area Frequency Throughput Throughput/Area
[Slices] [MHz] [Mbits] [Mbits / Slice]

127 597 160 800 1.34
251 1044 140 700 0.67
509 1850 135 675 0.37

The implementation results for ZT ′ provide fair estimates of the perfor-
mances of ZesT. Due to the absence of the constant c in ZesT, the usage
of BRAM and of control logics will slightly decrease. The frequency should
be on the same order as the longest data path remains unchanged. FPGA
implementations of ZesT will therefore have slightly better but comparable
throughput/area ratio as ZT ′.

In Table 9.5, we compare these results to the very optimized implemen-
tations of SHA proposed in [73] and [72] representing the current state-of-
the-art in terms of achieved throughput per occupied area. The results show
that the performances of ZT’ and of SHA in terms of throughput per slice
are in the same order. At comparable level of collision resistance, our im-
plementations of ZT’-127, ZT’-251 and ZT’-509 are about twice less efficient
than the state-of-the-art implementations of SHA-1, SHA-256 and SHA-512
respectively.

These implementations already reach the level of performances of SHA,
but we believe that they could be further improved by introducing pipeline
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Table 9.5: Comparison of the performances of the high-speed implementa-
tions of ZT’ with SHA.

Collision Area Frequ. Through. Through./Area

Resistance [Slices] [MHz] [Mbps] [Mbps / Slice]

SHA-1 [73] 263 533 230 1435 2.7

ZT’-127 264 597 160 800 1.34

SHA-256 [72] 2128 797 150 1184 1.49

ZT’-251 2126 1044 140 700 0.67

SHA-512 [72] 2256 1666 121 1534 0.92

ZT’-509 2255 1850 135 675 0.36

stages between the s cores. This technique should allow increasing the op-
erating frequency while still processing s bits per clock cycle, these bits be-
ing from different messages this time. This would significantly increase the
throughput at a relatively small area cost, i.e., mainly a 2n-bit register per
pipeline stage. For instance, only one pipeline stage could in theory increase
the frequency of the design of ZT ′-127 with s = 8 (110MHz, see Table 9.3)
to the frequency of the design with s = 4 (170 MHz, see Table 9.3), result-
ing in a throughput of roughly 1300 Mbps in place of 880, i.e., roughly 50%
improvement.

Since ZesT does not process the message by fixed size blocks, the control
part of the pipelined architecture will be more complicated in the case of
messages of different sizes. Indeed, when one message in the pipeline will
come to the processing of the final phase or when it will be fully hashed, the
computations for all messages will be irregularly interrupted. In applications
where the message sizes are integer multiples of some block size, the control
of the pipelined architecture is simplified as the interruptions for the final
phase and the final result happen at the same processing steps for each block.

9.4.3 Lightweight implementations

We now study the performances of ZesT in constrained environments such
as for RFID tags authentication. Like in the previous section, we give esti-
mations based on the lightweight implementations of ZT ′ that we proposed
in [88]. As shown in Table 9.3, ZT ′-127 with s = 1 already occupies a rel-
atively small area for the architecture presented in Section 9.4.2. We now
modify this architecture to focus on area reduction.

Figure 9.2 presents the architecture of our lightweight implementation of
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Figure 9.2: Lightweight architecture for ZT ′ proposed in [88]

ZT ′. The first main change introduced consists in computing the entries a
and b one bit at the time instead of all bits in parallel in order to save area
by replacing n-bit gates by 1-bit ones. This is illustrated on the figure with
the presence of the j suffix, with 0 ≤ j ≤ n − 1, that indicates that the
circuit operates on one-bit signals in order to compute one bit of a and b per
clock cycle. Processing one message bit mi therefore requires n clock cycles
instead of one previously.

The second main change involves the storage elements. In lightweight
implementations, large blocks of memory like BRAM are no longer available
and are therefore replaced by two registers (labeled a + c and b + c) that
store the result of the XOR operation between the intermediary result and the
constant c, which is hardcoded. The outputs of these registers are used as the
continuation of the message during the final phase. This architecture assumes
that the message is loaded in the circuit one bit at the time and therefore
does not require a dedicated storage element. The four n-bit registers in
this architecture are shift registers that do not have a parallel load since
the circuit operates on one-bit signals. Their 1-bit inputs and outputs are
represented as wires respectively at their tops and bottoms. At each clock
cycle, the register a outputs two bits a(j − 1) and a(j), the register b gives
b(j) and both registers take as inputs the two bits computed by the circuit.
The registers a + c and b + c also input these bits but only after a XOR
operation with the constant bits c(n + j) and c(j). During the final phase,
the output of the register b+ c is redirected toward the register a+ c, which
provides the bits of the continuation of the message. At the end of the final
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phase, the hash values, stored in the registers a and b, are also retrieved one
bit at the time.

As suggested earlier, the latency of this circuit when hashing a message m
containing µ bits is (µ + 2n).n clock cycles. The corresponding throughput
cannot be approximated any more by leaving aside the processing of the
additional 2n bits of the final phase since the messages are likely to be small in
the context of lightweight implementations. In the following, it is computed
based on the formula of the latency given above with µ = 512, i.e., assuming
consecutive messages of 512 bits. This size is arbitrary as there is no fixed
block size in the ZT ′ function.

Unless n is very small, the registers occupy a significant part of the total
area required. In a first approximation, the area needed is made of a con-
stant part dedicated to control and computing logics and of a second part
proportional to n for the four registers. As the computation part is small,
the main part of the area is used by the registers unless n is very small.

Compared to ZT ′, ZesT will occupy significantly less area and will use
a comparable frequency. Removing the constant between the two rounds
allows sparing two out of the four registers of Figure 9.2. This gain becomes
more significant when the parameter size increases because the area taken by
the registers also becomes more significant. The frequency of ZesT is not
changed compared to ZT ′ because the longest data path is in the processing
of message bits which is unchanged.

The design for ZT ′ was synthesized using Synopsys Design Analyzer ver-
sion Y-2006.06 with the CMOS65 library of STMicroelectronics. To provide
a comparison with the architecture of the preceding section, it was also im-
plemented on FPGA. For n=127, it requires only 73 slices with a frequency
of 145MHz. This particularly small area requirement is due to the use of
compact SRL16 registers to implement the shift registers (with no parallel
load), which significantly diminishes the number of slices used.

Table 9.6 summarizes the results concerning ZT ′ and other hash functions
based on the comparison performed in [49]. Results concerning the AES block
cipher are also given as a reference. The results for SQUASH are based on the
estimate performed in [123], which describes a lightweight implementation
on the Xilinx Virtex-4 LX FPGA. This estimate must be seen as an upper
bound. Finally, we also synthesized the ZT ′-127 and ZT ′-251 FPGA designs
with s = 1 to evaluate the area reduction obtained by the lightweight design.

ZesT will be very efficient in terms of occupied area with respect to
current hash functions. Table 9.6 shows that both the lightweight and high-
speed (with s = 1) versions of ZT ′-127 already outperform the hash functions
SHA-1 and MD5. Lightweight ZT ′-127 is a little smaller than the state
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Table 9.6: Comparison of the performances of the lightweight implementation
of ZT ′ with other hash functions and the AES block cipher

Output Through. Through Logic Area
size at 100kHz /Area process [GE]

[kbps] [bps/GE]
MD5 [99] 128 83.7 10 0.13µm 8400

SHA-1 [99] 160 40.2 4.9 0.35µm 8120
SHA-256 [99] 256 45.4 4.2 0.35µm 10868

SQUASH [123] 32 < 0.1 < 0.02 estimate <6000
AES-128 [98] 128 12.4 3.7 0.35µm 3400

DM-PRESENT-80 [49] 64 14.6 9.1 0.18µm 1600
H-PRESENT-128 [49] 128 11.5 4.9 0.18µm 2330
ZT’-127 (lightweight) 254 0.52 0.18 65nm 2945
ZT’-251 (lightweight) 502 0.20 0.04 65nm 5517

ZT’-127 (s = 1) 254 66.7 17.8 65nm 3752
ZT’-251 (s = 1) 502 66.7 9.2 65nm 7267

of the art implementation of the AES block cipher proposed in [98]. The
area requirements and collision resistances of ZT ′ and SHA are compared
in Table 9.7, illustrating the inferior area costs for ZT ′ at a comparable
collision resistance. ZT ′-127 requires roughly one third of the area of SHA-1
while ZT ′-251 needs half of the area of SHA-256. ZT ′-127 is a little less
compact than H-PRESENT-128, the hash function recently proposed in [49]
based on the block cipher PRESENT.

ZesT-127 is comparable to DM-PRESENT-80 and it outperforms even
H-PRESENT-128 for the same collision resistance. Based on our results
for n=127 and n=251, the area required for the lightweight ZT ′ may be
approximated by the function Area = 20n + 300. The area for ZesT can
therefore be roughly approximated by Area = 10n+300 as half of the registers
are removed. This leads to approximations of 1600 and 2900 gates equivalents
for ZesT-127 and ZesT-251 respectively.

For some applications, collision resistance is not required and a moderate
level of security is sufficient (60-bit or 80-bit security) [243]: for example,
many RFID protocols only rely on preimage resistance. ZesT turns out
to be a very interesting candidate for these applications. As explained in
Section 9.3.2, the preimage resistance of ZesT-n is at least 2n/2 based on
current knowledge on the balance problem, but it actually seems to be 22n.

In Table 9.8, our lightweight implementation of ZT ′-127 is compared
to SQUASH and DM-PRESENT-80 in terms of preimage resistance and
lightweight implementations. ZT ′-127 is twice as small as SQUASH. The
function DM-PRESENT-80 [49] is nearly twice as small as ZT ′-127 but (ac-
cording to our estimations above) comparable to ZesT-127. If we only rely
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Table 9.7: Comparison of the collision resistance and area cost of SHA with
the lightweight implementation of ZT’ and the approximation for ZesT.

Collision Area

Resistance [GE] (rel.)

SHA-1 [98] 263 8120 (1)

ZT ′-127 (lightweight) 264 2945 (0.36)

ZesT-127 (approximation) 264 1600 (0.20)

SHA-256 [98] 2128 10868 (1)

ZT ′-251 (lightweight) 2126 5517 (0.51)

ZesT-251 (approximation) 2126 2900 (0.27)

on the “provable” preimage resistance of ZesT, lightweight implementations
of ZesT-127 are therefore comparable to those of DM-PRESENT-80. How-
ever, based on the “heuristic” preimage resistance argued in Section 9.3.2,
DM-PRESENT-80 should be compared with a version of ZesT four times
smaller (for example, ZesT-31). According to our estimations for ZesT-127
and ZesT-251, ZesT-31 will probably require less than 1000GE, beating by
far even DM-PRESENT-80.

Table 9.8: Comparison of the preimage resistances and area costs of
lightweight implementations of ZT ′ and other one-way hash functions.

Preimage Area

Resistance [GE] (rel.)

SQUASH [123] 232 <6000 (1)

DM-PRESENT-80 [49] 264 1600 (0.27)

ZT’-127 (lightweight) 264 - 2256 2945 (0.49)

As pointed out above, ZesT already occupies a small area if the high-
speed design of Section 9.4.2 is used with s = 1. In practice, this imple-
mentation will probably be more suitable for area-constrained applications
than the lightweight version presented in this section. As our design choice
here was to minimize the area, our implementation has a low throughput
resulting in a long latency and an important energy consumption. However,
the flexibility of the ZesT function allows to raise the throughput easily by
increasing the number of bits of a and b processed in parallel at the cost of
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little additional logic. The two extreme points of this tradeoff between area
and throughput are our first implementation with s = 1 and our lightweight
implementation; the first one has a throughput 128 times as high for only
30% more area. The optimal point in practice will probably be closer to the
the first one but the results of this section may be understood as a lower
bound for area. Wherever the tradeoff is set, ZesT is a very interesting hash
function in the context of lightweight applications.

9.4.4 Exploiting parallelism

ZesT can be cut into small pieces (see Figure 9.3). It is particularly well-
suited for parallelism in the message computation. We point out that unlike
many hash functions recently proposed, ZesT has a serial and a parallel
modes that describe exactly the same function. Indeed, let us suppose that
we have N computing units for computing the ZesT hash value of a long
message.

Figure 9.3: Citrus’ ZesT in serial and parallel modes

For any ( a0 b0 ) ∈ F2n \ {( 0 0 )} and for any bitstrings m1,m2, ...,mN ′ ∈
{0, 1}∗, we have

Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m1||m2||...||mN ′)

= Hvec
ZT (Pn(X)|| ( a0 b0 ) ,m1)HZT (Pn(X),m2) ...HZT (Pn(X),mN ′) .

Moreover, the matrix version of Zémor-Tillich can be implemented as two
vectorial versions starting from ( 1 0 ) and ( 0 1 ):

HZT (Pn(X),mi) =

(
Hvec
ZT (Pn(X)|| ( 1 0 ) ,mi)

Hvec
ZT (Pn(X)|| ( 0 1 ) ,mi)

)
.
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This structure can be exploited to distribute the computation of the first
round of ZesT on a long message among N computing units. The messages
are divided into N + 1 blocks of equal sizes m0||m1||...||mN , the computation
of Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m0||m1) is given to the first unit and the computa-
tions of both Hvec

ZT (Pn(X)|| ( 1 0 ) ,mi) and Hvec
ZT (Pn(X)|| ( 0 1 ) ,mi) are given

to the ith unit (see Figure 9.4).

The exploitation of the parallelism has two costs: first, the total com-
putation cost of the N computing units is 2N−1

N
times the computation cost

of one single unit in a serial mode (it is nearly doubled when N is large).
Second, N − 1 vector by matrix multiplications must be performed at the
end to combine the partial hash values. Each of these vector by matrix prod-
ucts requires 4 full modular multiplications and 2 additions. As the cost of
a modular multiplication in F∗2n is about 2n additions [87] (a bit less if an
advanced algorithm like Schönhage or Karatsuba is used), the time required
to compute the ZesT hash value of a message of length µ using this method
is roughly

2LtXOR

[
2µ

N + 1
+ (4n+ 1)(N − 1) + 2n

]
(9.2)

where like in Section 9.4.1, L is the number of words needed to store n bits
and tXOR is the time needed to compute the XOR of two words.

The time required to compute a ZesT hash value in parallel is mini-
mized when N ≈

√
µ
2n

. For large messages (like data disks of 100GB≈ 240),
this would require too many computing units in practice hence the time is
essentially inversely proportional to N + 1.

...

1

Figure 9.4: Distributing computation among N computing units

A second kind of parallelism can be exploited in ZesT software compu-
tation. ZesT computes XORs, SXORs and SHIFTs on bitstrings of length n
which in ANSI C are decomposed into corresponding instructions on words
of length 32 or 64 bits. Using the SIMD instructions (Single Instruction,
Multiple Data) that are commonly found on modern microprocessors, the
function computation would be considerably sped up as 128 bits would be
treated in parallel. If the implementation is performed using recent graphical
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accelerators with 512-bit data BUS, then even the computation of ZesT-509
will require only 2 XOR or SXOR per bit on average.

9.5 Adding ZesT into NIST’s cooking pot

ZesT has very interesting properties from both security and efficiency points
of view. It is provably collision resistant, arguably non-malleable, reasonably
efficient in software, very efficient in hardware with respect to both high speed
and low area metrics and it is parallelizable. However, it does not completely
fulfil NIST’s requirements in its call for a new hash function standard [1].
In particular, ZesT is a keyed hash function, it has suboptimal preimage,
second preimage and collision resistances and it cannot be used with the
output sizes required by NIST because of subgroup attacks.

In this section, we present a fixed-key variant of ZesT and we study its
pseudorandom behavior. We then propose modifications of the function in
order to satisfy all NIST’s requirements and we discuss the efficiency and
security implications of these changes. The resulting function is less efficient
and considerably less simple than ZesT, but it satisfies all NIST’s require-
ments. The various changes suggested in this section can be added indepen-
dently into ZesT’s recipe; we suggest the reader to select his first-rate of
ingredients to satisfy his personal taste for security, efficiency, simplicity and
conformity with the NIST’s requirements.

9.5.1 Fixing all parameters

Although the formal notion of collision resistance requires defining a family
of hash functions with a key as parameter, all standardized hash functions
are unkeyed functions. In this section, we suggest a default procedure for
fixing the key value of ZesT for any prime value of n up to reasonably large
values.

The key of ZesT is made of n, of an irreducible binary polynomial Pn(X)
of degree n, and of an initial vector ( a0 b0 ) ∈ F2

2n \ ( 0 0 ). Besides the pri-
mality constraint on n, our choice of parameter must be clearly non-cheating
because of the trapdoor attacks possible for the person who chooses Pn(X)
or ( a0 b0 ) ∈ F2

2n \ ( 0 0 ). A traditional solution to this problem would be
to use a cryptographic hash function (for example SHA-1) and a universal
constant (for example pi) to generate the parameters. We suggest a differ-
ent approach based on an LFSR, that might present an advantage in area
constrained applications.
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Our goal is to select a key value that is “reasonably random” (say appar-
ently random for Joe-the-Plumber) and obviously non-cheating, and that can
be recomputed efficiently to avoid its storage in memory constrained envi-
ronments. To generate the 3n bits of Pn(X) and ( a0 b0 ), we use the maximal
Fibonacci LFSR defined by the polynomial x16 + x14 + x13 + x11 + 1. As n
must be at least 1024 to provide the 512 bits of preimage resistance required
by NIST for sensitive applications [1], the degree of the LFSR polynomial
must be at least 12. We chose a polynomial of degree 16 because it might
help in some applications if the LFSR register has an exact number of bytes.
The polynomial x16 + x14 + x13 + x11 + 1 has a maximal period 65535; it is
the polynomial of degree 16 proposed in [270].

From this LFSR we construct the following (cryptographically weak but
good enough for our purpose) pseudorandom bit generator that outputs the
first bit of the state.

uint16_t reg = INIT ;

for (i =1;i<=65535;i++)

{

bit = (reg & 0x0001)^((reg & 0x0002) >> 1)

^((reg & 0x4000) >> 14) ;

reg = (reg >> 1) | (bit << 15);

cout<<bit;

}

Let us write g(INIT, i) for the ith bit output by this generator if the
state is initially set to INIT. For any n value, we generate our parameters
Pn(X) and c as follows:

1. Fix INIT to the binary representation of pi that is 1100100100001111.

2. Build a polynomial from g as follows

a Set Pn(X) = Xn + 1

b Set the ith bit of Pn(X) to the value g(INIT, i)

3. Check wether Pn(X) is irreducible. If yes go to point 6.

4. If Pn(X) is not irreducible, modify it as follows:

Pn(x)← X−2
(
Pn(X) + (Pn(X) mod X2)

)
+Xn + 1 + bXn−1

where b is the next bit output by the LFSR.

5. Check wether Pn(X) is irreducible. If yes go to point 6, otherwise go back
to point 4.
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Table 9.9: Tests implemented into Dieharder version 2.28.1 [5]. The tests
preceded by “rft” are ready for testing (the test may - or may not - work
correctly) in that version, the tests preceded by “sus” are suspect (they
consistently fail “good” generators) and the tests preceded by “dev” are
under development.

Diehard Tests

-d 1 Diehard Birthdays test

[sus: -d 2 Diehard Overlapping Permutations test]

-d 3 Diehard 32x32 Binary Rank test

-d 4 Diehard 6x8 Binary Rank test

-d 5 Diehard Bitstream test

-d 6 Diehard OPSO test

-d 7 Diehard OQSO test

-d 8 Diehard DNA test

-d 9 Diehard Count the 1s (stream) test

-d 10 Diehard Count the 1s (byte) test

-d 11 Diehard Parking Lot test

-d 12 Diehard Minimum Distance (2D Spheres) test

-d 13 Diehard 3D Spheres (minimum distance) test

-d 14 Diehard Squeeze test

[sus: -d 15 Diehard Sums test]

-d 16 Diehard Runs test

-d 17 Diehard Craps test

-d 18 Marsaglia and Tsang GCD test

[dev: -d 19 Marsaglia and Tsang Gorilla test]

RGB Tests

-r 1 RGB Timing test (times the rng)

-r 2 RGB Bit Persistence test

-r 3 RGB Ntuple Bit Distribution test suite (-n ntuple)

-r 4 RGB Generalized Minimum Distance test

-r 5 RGB Permutations test (new, partial

replacement for operm tests)]

[rft: -r 6 RGB Lagged Sums test

(do not use the following as tests yet)

[dev: -r 7 RGB L-M-Ntuple Distribution test suite

(quite long)]

[dev: -r 8 RGB Overlapping Permutations test]

Statistical Test Suite (STS)

-s 1 STS Monobit test

-s 2 STS Runs test

-s 3 STS Serial test

User Tests

-u 1 User Template (Lagged Sum Test)

6. Take the 2n following consecutive bits of the LFSR to define the initial vector
( a0 b0 ), from the degree 0 coefficient of b0 to the degree n− 1 coefficient of
a0.

A C++ implementation of this procedure is given in Appendix D.

9.5.2 Use of unkeyed ZesT in standardized applica-
tions

In Section 9.3.3 we argued that any malleability property that was present
in the Zémor-Tillich hash function and its vectorial variant was removed in
ZesT. In this section, we use the Dieharder suite of pseudorandom tests [5]
to provide further evidence that ZesT has no apparent weakness. The tests
included in the version 2.28.1 of Dieharder we used are listed in Table 9.9.

Each test returns a p-value and a diagnostic according to this p-value.
The test is considered as PASSED if the p-value returned is larger than 5%.
The byte sequence analyzed is considered as POTENTIALLY WEAK if the
p-value is between 1% and 5%, and as POOR if it is smaller than 1%. Many
of these tests are probabilistic. On perfectly random bits they will return
POTENTIALLY WEAK 4% of the times and POOR 1% of the times.

ZesT was used in a counter mode with n in 31, 61, 127, 157, 223, 251, 383,
509, 1021 and the parameters fixed in the previous section. More precisely,
we computed the hash values of 1, 2, ..., 1.000.000, we truncated them by
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a few bits to fit perfectly into bytes, we concatenated the results and we
analyzed the resulting byte sequence with the Dieharder suite.

The results are shown in Table 9.10. Each column is a version of ZesT
labeled by its parameter n and each row is a test of Dieharder labeled as in
Table 9.9. As some tests are repeated, each entry shows the number of tests
for which the result was PASSED, POTENTIALLY WEAK and POOR. The
results for ZesT are very similar to what we may expect from random bytes:
for each n value, a few tests are failed below 5% and very few tests are failed
below 1%.

Table 9.10: Results of Dieharder for ZesT. The tests are identified as in
Table 9.9. As some tests are repeated, each entry gives the number of
tests whose verdicts were PASSED, POTENTIALLY WEAK and POOR.
a=PASSED (p-value larger than 5%); b=POTENTIALLY WEAK (p-value
between 1% and 5%); c=POOR (p-value smaller than 1%).

Test 31 61 127 157 223 251 383 509 1021
- r 3 31a1b 11a1c 11a1b 11a1b 11a1b 12a 12a 12a 11a1b
- r 4 4a 4a 3a1b 4a 4a 4a 4a 3a1b 3a1b
- r 5 5a1c 5a1c 6a 6a 5a1b 6a 6a 6a 6a
- r 6 33a 33a 33a 31a2b 33a 33a 32a1b 31a1b1c 33a
- d 1 1a 1a 1a 1a 1a 1a 1a 1b 1a
- d 3 1a 1a 1a 1a 1a 1a 1a 1a 1a
- d 4 1a 1a 1a 1a 1a 1a 1a 1a 1a
- d 5 1a 1a 1b 1a 1a 1a 1a 1a 1a
- d 6 1c 1a 1a 1a 1a 1b 1a 1c 1a
- d 7 1a 1a 1a 1a 1a 1a 1a 1a 1a
- d 8 1a 1a 1a 1b 1a 1a 1a 1a 1a
- d 9 1a 1b 1a 1a 1a 1a 1a 1a 1a
- d 10 1a 1a 1a 1a 1a 1a 1a 1a 1a
- d 11 1a 1a 1a 1a 1a 1a 1a 1b 1a
- d 12 1a 1a 1a 1a 1a 1a 1a 1a 1a
- d 13 1a 1a 1a 1a 1a 1a 1a 1a 1a
- d 14 1a 1a 1a 1a 1a 1a 1a 1a 1a
- d 16 2a 2a 2a 2a 2a 2a 2a 2a 2a
- d 17 2a 2a 2a 2a 2a 2a 2a 2a 2a
- d 18 2a 2a 2a 2a 2a 2a 2a 2a 2a
- s 1 1a 1a 1a 1a 1a 1a 1a 1a 1a
- s 2 1a 1a 1a 1a 1a 1a 1a 1a 1a
- s 3 29a1b 29a1b 30a 29a1c 30a 28a1b1c 30a 30a 27a3b
- u 1 1a 1a 1a 1a 1a 1a 1a 1a 1a
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We point out that Dieharder results are insufficient to definitely assert
the “pseudorandom behavior” of any function, but they may provide a first
positive evidence for it. In the case of ZesT, the results we obtain and the
absence of any apparent structure suggest that the unkeyed version may be
used in all standardized applications including DSA [12], key derivation [7],
HMAC [15] and random bit generation [8].

9.5.3 Reaching optimal (provable) collision resistance

ZesT-n is provably collision resistant up to n/2 bits but its output has 2n
bits. Optimal collision resistance can be reached by replacing the vecto-
rial version of Zémor-Tillich by its projective version in the second round.
However, this change has non-negligible efficiency and portability costs.

Recall from Chapter 5 that the projective and vectorial versions of Zémor-
Tillich have the same collision resistance if n is not too large. We might
therefore define

ZesT1(Pn(X)|| ( a0 b0 ) ,m)

:= Hproj
ZT

(
Pn(X)|| ( a0 b0 ) ,m||Hproj

ZT (Pn(X)|| ( a0 b0 ) ,m)
)
.

ZesT1 returns projective points [a : b] ∈ P1(F2n) that can be represented
in slightly more than n bits. Following the same reasoning as for ZesT, the
security properties of ZesT1 are easily derived. ZesT1 has provable preim-
age, second preimage and collision resistance up to n/2 bits based on the
hardness of finding collisions for Hproj

ZT (for parameters not too large, based
on the hardness of finding collisions for HZT ). This is optimal for collision
resistance but suboptimal for preimage and second preimage resistance. The
actual second preimage security of ZesT1 is indeed not larger than n/2 bits
but its preimage resistance is arguably as large as n bits because meet-in-the-
middle attacks are impossible. Finally, ZesT1 has no particular malleability
weakness because the existence of such a weakness would imply the existence
of a corresponding weakness in ZesT.

ZesT1 has 2n + 1 possible outputs while it would be more convenient if
the output could fit into n bits. For this reason, we suggest the following
additional change in ZesT:

ZesT2(Pn(X)|| ( a0 b0 ) ,m) := π (a0,ZesT1(Pn(X)|| ( a0 b0 ) ,m))

where π : F2n × P1(F2n)→ {0, 1}n is defined by

π(a0, [a : b]) =


b/a if a 6= 0,
b0/a0 if a = 0 and a0 6= 0,
X if a = 0 and a0 = 0,
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for ( a b ) := ZesT(Pn(X)|| ( a0 b0 ) ,m).
ZesT2 is collision resistant if Hproj

ZT is collision resistant and for param-
eters not too large, if and only if HZT is collision resistant. Indeed, let
(m,m′) be a collision for ZesT2: then either the ZesT1 hash values of m
and m′ are the same, either the ZesT1 hash value of one of them (let us
say m) is equal to [a0 : b0] (if a0 6= 0) or to [1 : X] (if a0 = 0). Defining
h := Hvec

ZT (Pn(X)|| ( a0 b0 ) ,m), the message m||h (if a0 6= 0) or m||h||0 (if
a0 = 0) collides with the void message for Hproj

ZT .

The function ZesT2 is less efficient than ZesT due to the final division
b/a that must be performed most of the times. Divisions in F∗2n can be done
either with extended versions of the Euclidean algorithm or with a modular
exponentiation. Algorithm 7.1 in [87] performs a division in the field with
about 4n additions. Therefore, the time cost of performing this division is
roughly the time needed to process 2n bits of the vectorial Zémor-Tillich. For
long messages, the division time represents a small overhead but for short
messages it will be significant.

The division has another significant drawback: implementations become
much more complex. Although the division can be decomposed into addi-
tions, the XOR gates of our implementations cannot be reused for the divi-
sion: this would require additional control logics, which would be as expensive
as simply duplicating the XOR gates. The control part of both high-speed
and low-area implementations will also considerably increase. Finally, the
maximal frequency of the circuit is likely to decrease. The hardware per-
formances of ZesT2 should therefore be further examined in the future. In
some applications, it might be interesting to compute ZesT in hardware and
derive the ZesT2 value in software.

9.5.4 Reaching optimal (heuristic) second preimage re-
sistance

The second preimage resistance of ZesT, ZesT1 and ZesT2 is limited to the
collision resistance level. Second preimages can be computed at the price of
collisions for the first round, and they suffice to compute second preimages on
the whole function. To reach an optimal level of second preimage resistance,
distinct n values may be used in the first and second round, with a value
about twice as large in the second round as in the first round.

For primes n and n′ ≈ 2n, irreducible polynomials Pn(X), Pn′(X) and
initial vectors ( a0 b0 ) ∈ F2

2n \ {( 0 0 )}, ( a′0 b′0 ) ∈ F2
2n′
\ {( 0 0 )},

ZesT3(Pn(X)|| ( a0 b0 ) ||Pn′(X)|| ( a′0 b′0 ) ,m)

:= π
(
a0, H

proj
ZT (Pn(X)|| ( a0 b0 ) ,m||Hvec

ZT (Pn′(X)|| ( a′0 b′0 ) ,m))
)
.
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The collision and preimage resistances of ZesT3 are identical to the previ-
ous functions. Moreover, we argue that ZesT3 has optimal second preimage
resistance. Indeed, let us suppose that on input m, there exists an algorithm
that finds m′ colliding with m for ZesT3. Either m and m′ have the same
intermediate hash value after the first round, either not. The first case clearly
reduce to the second preimage resistance of Hvec

ZT in the first round, which
has a complexity of n′/2 ≈ n bits. The second case clearly gives a collision
in the second round, but this argument only provides a security level of n/2
bits.

The second preimage resistance cannot be proved up to n bits based on the
balance problem, but heuristic arguments fill in the gap. Indeed, a proof must
assume that given m, it is infeasible to find m′ such that the vectorial Zémor-
Tillich hash values of m and m′ are collisions for the projective Zémor-Tillich
hash function. This assumption is actually a non-malleability assumption
on the vectorial Zémor-Tillich function. We know that the last function is
not non-malleable with respect to relations involving concatenations, but
the relation here seems completely unrelated to the hash structure and the
assumption therefore seems reasonable.

ZesT3 is three times less efficient than ZesT because a vectorial hash
value of m is computed with a polynomial of degree n′ ≈ 2n in the first round
and with a polynomial of degree n in the second round. The software time
performances, the high speed performances and the lightweight performances
will therefore decrease roughly by a factor 3.

9.5.5 Tweaking the function for NIST’s output sizes

To avoid subgroup attacks (Section 5.3.5), the parameter n must be prime
in ZesT and its variants. However, standardized hash functions usually
have output sizes multiple of 32 or even 64. In particular, the output sizes
required by NIST for the SHA-3 standard are 224, 256, 384 and 512 [1]. In
this section, we propose two alternative modifications of the function to reach
these output sizes and we discuss their respective advantages and drawbacks.
For each of these alternatives, we define four instances of the function that
we call kumquat, lemon, orange and grapefruit, corresponding to the NIST
output sizes.

The first alternative chooses n as the smallest prime larger than the tar-
geted size and truncates the result by a few bits. The second alternative
chooses n as the largest prime smaller than the targeted size, adds a third
round to the function and concatenates the result of the third round with a
few bits coming from the second round. The resulting parameters n and the
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numbers of truncated or added bits ε for NIST’s output sizes are shown in
Table 9.11.

Table 9.11: Parameters for kumquat, lemon, orange and grapefruit in the
two alternatives

Name Output Truncate Extend
n ε n ε

kumquat 224 227 3 223 1
lemon 256 257 1 251 5
orange 384 389 5 383 1
grapefruit 512 523 11 509 3

Both changes have (small) negative impact on the efficiency of the func-
tion. The first variant uses a larger state and will require an additional word
XOR for each addition. For kumquat and in 32-bit architecture, this is not
negligible as it represents 14% additional XORs. In hardware, the effect may
be considered as negligible. The second variant has a third round hence it
requires about 2n additional full additions. This effect is negligible for long
messages but not for short ones.

The first alternative is more natural and conceptually simpler. However,
the collision resistance of a hash function does not imply that the function
remains collision resistant if some of its bits are truncated. Of course, we
believe that the resulting function is still collision resistant: the opposite
would contradict in a strong sense our intuition that ZesT has no non-
random behavior. Nevertheless, with this alternative we lose the benefit of
provable security for collision resistance. On the other hand, preimage and
second preimage resistance (up to the birthday bound) still follow from the
hardness of the balance problem.

The second variant is a little more elaborate but its preimage, second
preimage and collision resistances are implied by the collision resistance of
ZesT. A third round is added in this function because the output of the
first round is not random enough to be used for the ε additional bits. The
function is provably preimage, second preimage and collision resistant up to
n/2 bits which for collision resistance is only ε/2 bits worse than the birthday
bound.
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9.6 Open problems in the design’s parame-

ters

In this section, we discuss possible improvements in ZesT that require further
study.

9.6.1 Use of special polynomials

Special polynomials, in particular sparse polynomials, may significantly im-
prove the efficiency of ZesT in software [207]. Indeed, if Pn(X) = Xn +
P31(X), a modular reduction only requires one word XOR instead of L word
XORs. For large n and small architectures, this results in an efficiency im-
provement of nearly 25%. The efficiency in hardware, at least for our designs
of Section 9.4.2 and 9.4.3, is unchanged. However, the use of sparse polyno-
mials impacts the pseudorandomness behavior of ZesT as the bit mixing is
achieved through the modular reductions.

We heuristically observed that “the images of messages with a lot of
zeroes also have a lot of zeroes”. This fact may be explained from the prop-
erties of the polynomials fi(X) and of matrix powers that we discussed in
Section 5.1.3: the polynomial f2i(X) = X2i + 1 has a lot of zeroes in its rep-
resentation for any i. Similarly, we observed that “the images of messages
with a lot of ones have a lot of zeroes”.

Further study should demonstrate whether this weakness can be turned
into an actual collision attack against the Zémor-Tillich hash function when
sparse polynomials are used, or if its damage is limited to pseudorandom
properties. In the second case, we solved the problem in [208] with an ap-
propriate intermediate permutation between the first and the second rounds
of ZesT. The purpose of this permutation is to mix the bits produced after
the first round; it may be as simple as an XOR by a constant whose bits do
not follow any repetition pattern, for example the bits of pi [208].

9.6.2 Other graph generators

From both efficiency and security points of view, the generators chosen in the
Zémor-Tillich hash function are better than other Cayley hash proposals like
LPS and Morgenstern [68, 259, 204]. There may exist other generators sets
that still improve the function, but further study is required to assert their
security. Balance and representation problems are not classical problems
but in the case of the Zémor-Tillich hash they have at least been studied
from 15 years. If the generators change, the confidence that we may have on
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the Zémor-Tillich hash function will not transfer automatically to the new
function because the hardness of these problems seems to depend a lot on
the generators choice.

From an efficiency point of view, the group SL(2,F2n) is definitely better
than the group SL(2,Fp) used in [68]. The function efficiency will however
improve a lot if sets of 4, 8 or 16 generators can be used instead of the two
generators A0 and A1 of the Zémor-Tillich hash function.

We may also try to change the generators to protect against the trap-
door attack on the vectorial version. The choice of A0 and A1 was partic-
ularly unlucky with this respect, because the attack will likely be unpracti-
cal for randomly chosen generators. Indeed, let M,M ′ ∈ SL(2,Fp) satisfy
( a0 b0 )M = ( a0 b0 )M ′. This is equivalent to det(M + M ′) = 0, hence to
det(I + M ′M−1) = 0 and finally to Tr(M ′M−1) = 0. There are about 23n

matrices in SL(2,Fp), among which about 22n matrices with 0 trace, hence
for randomly chosen generators we would need about 2n random products of
them in order to find two matrices of the correct form. Choosing as genera-
tors the two matrices

A′0 =

(
X2 1
1 0

)
A′1 =

(
X X + 1
1 1

)
.

seems safe with respect to the vectorial trapdoor attack. The change of X by
X2 in A0 will not affect too much the efficiency. Moreover, this change would
have the advantage to lessen greatly the density of the subset Ω generated
in SL(2,F2[X]), which could be benefic against lifting attacks.

Since balance and representation problems in groups SL(2, .) are badly
known in general and since their hardness seems to depend a lot on the
choice of generators, any change in the generators should be followed by its
own careful security study.

9.6.3 Number of rounds

Heuristic reasoning and statistical tests on the outputs of ZesT used in a
counter mode tend to assert that two rounds are enough for its security as
a general-purpose hash function. However, statistical tests can only give a
first answer for pseudorandomness and we might have missed some way to
exploit the group structure or even some hidden quasi-group structure in the
function. In particular, we believe that the number of rounds necessary in
ZesT should be better examined, especially in the light of standard attacks
against traditional hash functions. We leave this question as an interesting
open problem.
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9.7 Conclusion

In this chapter, we transformed a provable hash function with its inher-
ent malleability weaknesses into a practical, all-purpose hash function. We
started from the Zémor-Tillich hash function because of its elegant Cayley
hash design, its potentially great efficiency and the possibility to parallelize
the hash computation. Although the collision resistance of this function relies
on a problem that is not classical in cryptography, the problem has resisted
15 years of cryptanalytic attempts and we believe that it deserves broader
interest in the cryptographic community.

We called ZesT our modification of the Zémor-Tillich hash function.
ZesT is provably collision, preimage and second preimage resistant. Our
first implementations show that it is reasonably fast in software and efficient
in FPGA and that it admits ultra-lightweight implementations. In particular,
it is only 4 to 10 times as slow as SHA in software, comparable to SHA on
FPGA and better than any other known hash function for area constrained
applications. Moreover, the hash computation can be distributed without
affecting the result.

The ZesT function does not fill all NIST requirements in its recent call,
but it can be easily modified to comply with those requirements. As long as
the security of the Zémor-Tillich hash function is trusted, ZesT is definitely
an interesting hash candidate as an all-purpose hash function.
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Chapter 10

Conclusion and open problems

Hash functions are essential cryptographic primitives, useful for message au-
thentication codes and digital signatures but also for many and very diverse
other cryptographic protocols. As the main properties required from hash
functions are collision and (second) primage resistances, it is very desirable
to build these properties on the hardness of mathematical problems that can
be studied independently by mathematicians and cryptographers.

The expander hash design, proposed in the early nineties by Gilles Zémor
and Jean-Pierre Tillich and recently rediscovered by Denis Charles, Eyal
Goren and Kristin Lauter, provides “provable security” for preimage and
collision resistance in all existing cases. Besides, it has significant other
desirable properties but also some weaknesses following from its important
mathematical structure.

The goal of this thesis was to formalize and prove general properties of
expander hashes, to investigate the actual security and efficiency of existing
constructions and to provide solutions for the inherent weaknesses of the
design.

This chapter concludes our tour of expander hashes. In Section 10.1 we
summarize the content of the thesis, in Section 10.2 we point out its main
contributions and in Section 10.3 we discuss important problems opened or
left open by our work.

10.1 Expander hash functions

As traditional hash function designs are being questioned, the simple and
clear design of expander hashes deserves a renewed interest today. In ex-
pander hashes, the main properties of hash functions, their collision, second
preimage and preimage resistances and their output distributions, can be

223
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interpreted and studied with the graph-theoretic notions of girths, cycles
and expanding constants. In the important case of Cayley hashes, collision,
second preimage and preimage resistances admit further interpretation and
study in terms of group-theoretical problems. Although these problems are
not classical in cryptography, in some cases they have resisted cryptanalysis
attempts for more than 15 years and this alone justifies further consideration.

Besides, expander hashes have significant advantages over traditional
hash functions. No padding nor domain-extension transform are required
as expander hashes already process message of arbitrary sizes. Cayley hash
functions can be computed in parallel, a property whose interest for efficiency
cannot be overstated while the future of computer architectures is clearly in
the parallelism. If a graph family is used, the function is scalable, which
means that it may reach any level of security with appropriate parameter
choices. The main drawback of expander hashes is their malleability proper-
ties induced by their mathematical structure.

The Zémor-Tillich hash function was one of the first expander hash pro-
posals. Its computation is the most efficient among all expander hashes as it
only requires a few additions per bit in a field of characteristic 2. The function
is parameterized by a small integer n and an irreducible binary polynomial
Pn(X). Existing attacks have shown that the integer n should be prime and
large enough to prevent birthday attacks in a set of size 2n. The polynomial
must be fixed in an unambiguous way to avoid trapdoor attacks. Although
the output of Zémor-Tillich is a 2× 2 matrix whose coefficients have n bits,
its output set only has about 23n elements. Moreover, the exact security for
collision, second preimage and preimage resistances is of n/2 bits instead of
the optimal 3n/2, 3n and 3n bits. The function suffers from malleability and
it is invertible on short messages, but it has remained essentially unbroken
since 1994. Two variants, the vectorial and the projective variants, have re-
duced outputs and the same security against collision and preimage finding
algorithms.

The use of LPS and Morgenstern Ramanujan graphs in the expander hash
design was motivated by their optimal expansion with respect to other undi-
rected graphs. This advantage must however be moderated by the fact that
directed graphs, like the Zémor-Tillich graphs, may still have a better expan-
sion rate than optimal undirected graphs. Moreover, LPS and Morgenstern
hash functions are now completely broken: efficient probabilistic polynomial
time algorithms exist both for finding collisions and for computing preimages.
Both functions may be repaired easily but at the cost of some efficiency and
the Ramanujan property. The attacks were actually made possible by the
mathematical structure necessary to reach the Ramanujan expansion rate in
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LPS and Morgenstern graphs, hence these two examples suggest that using
Ramanujan graphs in the expander hash design may not be a good idea.

This conclusion is qualified with Pizer hashes that use the Ramanujan
graph family of Pizer and have kept resisting all attacks so far. Pizer graphs
admit two equivalent descriptions, one in the language of orders in a quater-
nion algebra and another one in the language of supersingular elliptic curves.
In the first language, Pizer hashes would be broken by techniques similar to
those breaking LPS and Morgenstern hash functions. However, Pizer hashes
were defined in the language of supersingular elliptic curves and the trans-
lation from one language to the other is not efficient. Pizer hashes might
actually be the most secure expander hash function proposed so far. The
function has however little chance to be used once in practice due to its poor
efficiency and to remaining issues in the key generation algorithm.

Expander hash functions are malleable: it is possible to relate two hash
values without knowing the corresponding messages. The property does not
contradict collision nor preimage resistances but it prevents from using the
hash function in wider contexts. This malleability can be captured through
Canetti et al.’s correlation intractability definition or through Boldyreva et
al.’s non-malleability definition. Depending on the protocols, malleability
properties in general and in the particular case of expander hashes may or
may not create security threats. In some cases like Cayley hashes, the mal-
leability properties can be turned into a major advantage of the function.

The malleability properties of expander hashes may be easily removed
with a little additional design. The ZesT hash function is essentially the
vectorial version of Zémor-Tillich iterated twice as in HMAC. The function
is provably collision and preimage resistant if the balance problem corre-
sponding to Zémor-Tillich is hard. It is between 4 and 10 times slower than
SHA in software but it has comparable efficiency on FPGA and it admits
an ultra-low weight implementation in ASIC. The function computation can
be parallelized greatly and efficiently, and its simplicity will certainly allow
for a much wider range of implementations and for software-optimized code
generation. A careful examination and pseudorandom tests performed with
the Dieharder revealed no apparent malleability weakness, which suggests
that the function can be used as a general-purpose hash function. Moreover,
ZesT can be slightly modified to reach all requirements of the NIST com-
petition. ZesT will really become practical if the hardness of the balance
problem corresponding to Zémor-Tillich becomes better established.



226 CHAPTER 10. CONCLUSION AND OPEN PROBLEMS

10.2 Contributions of the thesis

The goal of this thesis was to formalize and prove general properties of ex-
pander hashes, to investigate the actual security and efficiency of existing
constructions and to provide solutions for the inherent weaknesses of the
design.

Our first main contribution in the thesis is a security review of the Zémor-
Tillich hash function, new collision and preimage attacks against it and the
introduction of its vectorial and projective variants. Some authors had been
claiming attacks against the Zémor-Tillich hash function but the exact im-
plications of these attacks was not clear to the community and the function
was sometimes wrongly considered as broken. In Chapter 5, we described,
analyzed and in many cases improved attacks that had often only been jus-
tified by concrete examples on particular parameters or on reduced versions.
Subsequently, we introduced new attacks on the function and two variants,
the vectorial and projective variants, that have reduced output sizes for es-
sentially the same security1.

Our second main contribution is the full cryptanalysis of the LPS and
Morgenstern hash functions2 presented in Chapter 6. Tillich and Zémor
computed collisions for the LPS hash functions; we found a non-trivial ex-
tension of their algorithm to a preimage algorithm and could extend both
algorithms to the Morgenstern hash function as well.

Our third main contribution is the introduction of ZesT, an all-purpose
hash function based on the Zémor-Tillich hash function3 presented in Chap-
ter 9. ZesT keeps the best properties of Zémor-Tillich and avoids its main
weaknesses. Surprisingly for a provable hash function, the ZesT hash func-
tion will really become practical once the hardness of the representation
problem corresponding to the Zémor-Tillich hash function is better estab-
lished. ZesT is provably secure, parallelizable, scalable, and admits a wide
range of (very) efficient implementations.

This thesis is the first review of the expander hash design. Besides the
main contributions mentioned above, a review of hash functions literature
is proposed in Chapter 2 and a review of the main “provable” constructions
in Chapter 3. In Chapter 4, expander and Cayley hash properties are care-
fully related with graph and group properties. Some aspects of Pizer hashes
are put forward in Chapter 7. Malleability properties of expander hashes

1Together with Jean-Jacques Quisquater, Jean-Pierre Tillich and Gilles Zémor [207].
2Together with Kristin Lauter and Jean-Jacques Quisquater [204].
3Together with Giacomo de Meulenaer, Jean-Jacques Quisquater, Jean-Pierre Tillich,

Nicolas Veyrat-Charvillon and Gilles Zémor [208, 88, 203].
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are investigated in Chapter 8 together with their possible positive and nega-
tive consequences in applications. This thesis covers all aspects of expander
hashes, from applications of hash functions to security properties and from
the security of particular instances to their practicability and their efficiency
in software and in hardware.

Scientific contributions of the author that are not related to this thesis
are briefly discussed in Appendix A.

10.3 Open problems

In this section, we describe important problems that have been opened or left
open by our work. The interest of studying representation problems and their
potential applications to cryptography is justified in Section 10.3.1, the need
for new hash functions definitions and designs is stressed in Section 10.3.2,
and further problems encountered in the thesis are collected in Section 10.3.3.

10.3.1 Representation problems in cryptography

The Cayley hash function design is a very appealing one. The collision re-
sistance of a Cayley hash is equivalent to the hardness of the corresponding
balance problem and it implies the hardness of the corresponding represen-
tation problem. In general, this last problem is not strictly equivalent to the
balance problem but its simple form makes it simpler to study. Moreover,
as the two problems are very similar, it seems unlikely that a new technique
could be developed to solve a balance problem without affecting the security
of the corresponding representation problem.

In this thesis, we have seen representations problems that are easy to
solve and others that have resisted all cryptanalytic attempts. In general,
the exact hardness of representation problems is not known and it definitely
deserves further study. In particular, it would be very interesting to identify
classes of groups and generators such that the corresponding representation
problems are easy, other classes that reduce to well-known problems like
discrete logarithm problems, and finally classes that cannot be reduced to
known problems but still may be thought of as hard problems.

New techniques and ideas must be developed in order to break these
problems or to provide good arguments in favor of their hardness. Related
problems from the theory of expander graphs and from representation theory
are likely to bring new insights if appropriate connections can be found. Com-
pletely elementary new techniques might also be able to break many prob-
lems; in particular, the approaches we identified in Section 5.6 as promising
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for the Zémor-Tillich hash function may serve other problems.
The interest of representation problems is not limited to hash functions.

They are useful to generate pseudorandom permutations and we suspect that
they have an important role to play to prevent key recovery attacks in the
encryption scheme of [233] and in many other cryptographic applications
that remain to be discovered. A large part of cryptography is built upon
the hardness of a few mathematical problems. Although the security of the
discrete logarithm, the integer factorization and the elliptic curve discrete
logarithm problems are well established, a significant breakthrough might
still happen in the resolution of one or all of them. As some instances of
representation problems seem to be hard problems, it is a natural and very
interesting open problem to see how much of modern cryptography we can
build upon them.

10.3.2 Better understanding of hash functions

Even more important for cryptography but less specific to expander hashes,
this thesis confirmed the need for new definitions and new designs for hash
functions.

New definitions are needed to characterize the malleability properties of
provable hash functions and to replace the random oracle model when colli-
sion resistance is not sufficient. In 1993, Anderson [27] already pointed out
that protocol designers should explicitly tell which properties they assume
from the hash functions they use. The solution does not rely on assuming a
random oracle model in applications: besides its soundness issues, the model
discards nearly all provable hash functions because of their malleability prop-
erties, even if they could actually be used in many protocols.

The correlation intractability and non-malleability definitions discussed in
Chapter 8 are very appealing; their usefulness in applications should however
be further demonstrated. Another interesting recent result is the notion of
programmable hash functions [132] that seem to embrace a wide spectrum of
definitions, from very useful (non-achievable) notions to achievable but less
useful ones.

From the point of view of standardization, special-purpose hash functions
that are limited to some applications but would render other applications in-
secure, are not desirable. The ZesT function that we developed in Chapter 9
presents a good trade-off between provable and heuristic properties; it uses a
provable hash function as a building block to construct an all-purpose hash
function by removing the original malleability properties with additional de-
sign. A similar approach was adopted in the SWIFFTX submission to NIST,
based on the provable hash function SWIFFT described in Section 3.3. We
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believe that this approach is very meaningful and should be further developed
in the future.

10.3.3 Miscellaneous

As complete as we tried to be in this thesis, there remain some gaps that
we could not fill in the provable security aspects of expander hashes. In Sec-
tion 4.2.5, despite of some intuition that the result is true when collisions
are hard to find, we could not prove nor disprove an equivalent of the “left-
over hash lemma” to use expander hashes for randomness extraction. In
Section 4.3.2 and 4.3.3, we could not prove nor disprove the expansion prop-
erty for one of Zémor’s construction and for the Zémor-Tillich hash function,
although it is widely believed that Cayley graphs of special linear groups
are good expanders. In a sense, this last gap might be a good news for the
security of these functions: precise bounds on the eigenvalues might come
together with a better understanding of the graph structure and hence bring
new ideas for collision searches.

10.4 Conclusion

With this chapter, we conclude our tour of expander hashes, a class of hash
functions with a particularly elegant design based on graphs and non-Abelian
groups. These functions are still in their childhood but in our opinion, they
could really provide very interesting NIST hash candidates... for SHA-4.
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Technical report, UCL CRYPTO group, 1995.

[148] B. S. Kaliski Jr., editor. Advances in Cryptology - CRYPTO ’97, 17th
Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture
Notes in Computer Science. Springer, 1997.

http://www-cse.ucsd.edu/~russell/RANDCLASS/outline.html
http://www-cse.ucsd.edu/~russell/RANDCLASS/outline.html


BIBLIOGRAPHY 243

[149] M. Kassabov, A. Lubotzky, and N. Nikolov. Finite simple groups as
expanders, 2005.

[150] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chap-
man & Hall/Crc Cryptography and Network Security Series). Chapman
& Hall/CRC, 2007.

[151] L. Knudsen, F. Mendel, C. Rechberger, and S. Thomsen. MDC-2.
Ecrypt Workshop on Hash Functions, June 2008.

[152] L. R. Knudsen, editor. Advances in Cryptology - EUROCRYPT 2002,
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Amsterdam, The Netherlands, April 28 - May 2,
2002, Proceedings, volume 2332 of Lecture Notes in Computer Science.
Springer, 2002.

[153] L. R. Knudsen and B. Preneel. Fast and secure hashing based on codes.
In Kaliski Jr. [148], pages 485–498.

[154] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48:203–209, 1987.

[155] H. Krawczyk. LFSR-based hashing and authentication. In Desmedt
[89], pages 129–139.

[156] H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS. The
Internet Society, 2000.

[157] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum
problems. 32(1):229–246, Jan. 1985. Preliminary version in Proc. 24th
IEEE Foundations Computer Science Symp., pp. 1–10, 1983.

[158] X. Lai and J. L. Massey. Hash function based on block ciphers. In
EUROCRYPT, pages 55–70, 1992.

[159] L. Lamport. Constructing digital signatures from a one-way function.
Technical report, October 1979.

[160] P. Lancaster and M. Tismenetsky. The theory of matrices. Computer
Science and Applied Mathematics. Academic Press Inc., Orlando, Fla.,
second edition, 1985.

[161] S. Lang. Algebra. Addison-Wesley, 1965.



244 BIBLIOGRAPHY

[162] F. T. Leighton and S. Micali. Secret-key agreement without public-key
cryptography. In Stinson [256], pages 456–479.

[163] A. K. Lenstra. Key length, contribution to “The handbook of infor-
mation security”, 2004.

[164] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. J.
Cryptology, 14(4):255–293, 2001.

[165] H. W. J. L. L. Lenstra, A. K.; Lenstra. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(5):515–534, 1982.

[166] R. Lidl and H. Niederreiter. Finite fields, volume 20 of Encyclope-
dia of Mathematics and its Applications. Cambridge University Press,
Cambridge, second edition, 1997. With a foreword by P. M. Cohn.

[167] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combi-
natorica, 8:261–277, 1988.

[168] A. Lubotzky and B. Weis. Groups and expanders, 1992.

[169] S. Lucks and M. Daum. The story of Alice and her Boss: Hash functions
and the blind passenger attack. Rump Session of Eurocrypt 2005, 2005.

[170] V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks
are collision resistant. In I. Wegener, V. Sassone, and B. Preneel,
editors, Proceedings of the 33rd international colloquium on automata,
languages and programming - ICALP 2006, volume 4052 of Lecture
Notes in Computer Science, pages 144–155, Venice, Italy, July 2006.
Springer-Verlag.

[171] V. Lyubashevsky and D. Micciancio. Asymptotically efficient lattice-
based digital signatures. In Canetti [62], pages 37–54.

[172] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Provably
secure FFT hashing. In NIST 2nd Cryptogaphic Hash Workshop, 2006.

[173] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT:
A modest proposal for FFT hashing. In Nyberg [196], pages 54–72.

[174] D. Mackenzie. Computer science: Hash of the future? Science,
319(5869):1481+, March 2008.

[175] S. Matyas, C. Meyer, and J. Oseas. Generating strong one-way func-
tions with cryptographic algorithm. IBM technical Disclosure Bulletin,
27:5658–5659, 1985.



BIBLIOGRAPHY 245

[176] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996.

[177] R. Merkle. Secrecy, authentication, and public key systems. Technical
report, UMI Research Press, 1979.

[178] R. C. Merkle. One-way hash functions and DES. In Brassard [55],
pages 428–446.

[179] R. C. Merkle and M. E. Hellman. Hiding information and signatures
in trapdoor knapsacks. IEEE Transactions On Information Theory,
24:525–530, 1978.
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Publications list

A.1 Cryptographic Hash Functions from Ex-

pander Graphs

Title: ZesT: an all-purpose hash function based on Zémor-Tillich
Authors: Christophe Petit, Giacomo de Meulenaer, Jean-Jacques Quisquater,
Jean-Pierre Tillich, Nicolas Veyrat-Charvillon and Gilles Zémor
Publication information: Preprint (2009)
Abstract: “Provable” hash functions, the collision resistance of which relies
on hard mathematical problems, are very appealing since collision resistance
is by far the most important property that a hash function should satisfy.
However, provable hash functions tend to be slower than specially-designed
hash functions like SHA, and their algebraic structure often implies homo-
morphic properties and weak behaviors on particular inputs. We introduce
the ZesT hash function, a provable hash function that is based on the Zémor-
Tillich hash function. ZesT is provably collision and preimage resistant if
the balance problem corresponding to Zémor-Tillich is hard. It is currently
between 4 and 10 times slower than SHA in software but it has compara-
ble efficiency on FPGA and it admits an ultra-low weight implementation in
ASIC. The function computation can be parallelized greatly and efficiently,
and its simplicity will certainly allow for a much wider range of implemen-
tations and for software-optimized code generation. A careful examination
and pseudorandom tests performed with the Dieharder revealed no appar-
ent malleability weakness, which suggests that the function can be used as
a general-purpose hash function. Moreover, ZesT can be slightly modified
to reach all requirements of the NIST competition. ZesT will really become
practical if the hardness of the balance problem corresponding to Zémor-
Tillich becomes better established.
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Title: Hardware Implementations of a Variant of the Zémor-Tillich Hash
Function: Can a Provably Secure Hash Function be very efficient?
Authors: Giacomo de Meulenaer, Christophe Petit and Jean-Jacques Quisquater
Publication information: Submitted (2009)
Abstract: Hash functions are widely used in cryptography, and hardware
implementations of hash functions are of interest in a variety of contexts
such as speeding up the computations of a network server or providing au-
thentication in small electronic devices as RFID tags. Provably secure hash
functions, the security of which relies on the hardness of a mathematical
problem, are particularly appealing for security, but they used to be too in-
efficient in practice. In this paper, we study the efficiency in hardware of ZT’,
a provably secure hash function based on the Zémor-Tillich hash function.
We consider three kinds of implementations targeting a high throughput and
a low area in different ways. We first present a high-speed implementation of
ZT’ on FPGA that is nearly half as efficient as state-of-the-art SHA imple-
mentations in terms of throughput per area. We then focus on area reduction
and present an ASIC implementation of ZT’ with area costs much smaller
than SHA-1 and even than SQUASH, which was specially designed for low-
cost RFID tags. Between these two extreme implementations, we show that
the throughput and area can be traded with a lot of flexibility. Finally, we
show that the inherent parallelism of ZT’ makes it particularly suitable for
applications requiring high speed hashing of very long messages. Our work,
together with existing reasonably efficient software implementations, shows
that this variant of the Zémor-Tillich hash function is in fact very practical
for a wide range of applications, while having a security related to the hard-
ness of a mathematical problem and significant additional advantages such
as scalability and parallelism.

Title: Hard and easy Components of Collision Search in the Zémor-Tillich
Hash Function: New Instances and Reduced Variants with equivalent Secu-
rity
Authors: Christophe Petit, Jean-Jacques Quisquater, Jean-Pierre Tillich
and Gilles Zémor
Publication information: To appear in the proceedings of CT-RSA 2009
Abstract: The Zémor-Tillich hash function has remained unbroken since
its introduction at CRYPTO’94. We present the first generic collision and
preimage attacks against this function, in the sense that the attacks work
for any parameters of the function. Their complexity is the cubic root of the
birthday bound; for the parameters initially suggested by Tillich and Zémor
they are very close to being practical. Our attacks exploit a separation of
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the collision problem into an easy and a hard component. We subsequently
introduce two variants of the Zémor-Tillich hash function with essentially
the same collision resistance but reduced outputs of 2n and n bits instead
of 3n bits. Our second variant keeps only the hard component of the colli-
sion problem; for well-chosen parameters the best collision attack on it is the
birthday attack.

Title: Full Cryptanalysis of LPS and Morgenstern Hash Functions
Authors: Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater
Publication information: SCN 2008 - Proceedings of the Sixth Confer-
ence on Security and Cryptography for Networks
Abstract: Collisions in the LPS cryptographic hash function of Charles,
Goren and Lauter have been found by Zémor and Tillich [CRYPTO’94], but
it was not clear whether computing preimages was also easy for this hash
function. We present a probabilistic polynomial time algorithm solving this
problem. Subsequently, we study the Morgenstern hash, an interesting vari-
ant of LPS hash, and break this function as well. Our attacks build upon
the ideas of Zémor and Tillich but are not straightforward extensions of it.
Finally, we discuss fixes for the Morgenstern hash function and other appli-
cations of our results.

Title: Efficiency and Pseudo-Randomness of a Variant of Zémor-Tillich Hash
Function
Authors: Christophe Petit, Nicolas Veyrat-Charvillon, and Jean-Jacques
Quisquater
Publication information: WIC’2008 - Symposium on Information The-
ory and Communication in the Bénélux and ISECS’2008 - Proceedings of
the 15th IEEE International Conference on Electronics, Circuits and Sys-
tems (invited paper)
Abstract: Recent breakthroughs concerning the current standard SHA-1
prompted NIST to launch a competition for a new secure hash algorithm.
Provably secure hash functions (in the sense that their security relates to the
hardness of some mathematical problems ) are particularly interesting from
a theoretical point of view but are often much slower than heuristic functions
like SHA. In this paper, we consider a variant of ZT hash, a provably secure
hash function designed by Zémor and Tillich proposed in 1994.Despite some
attack proposals, its security has not been fundamentally challenged to this
day. Our function is twice as fast as ZT hash and has enhanced security
properties. We propose optimized parameters and algorithms to increase the
speed of both hash functions. This makes our function one of the most ef-
ficient “provably secure” hash functions to this day. Finally, we show that
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our hash function successfully passes most pseudo-randomness tests in the
Dieharder suite.

Title: Cayley Hashes: A Class of Efficient Graph-based Hash Functions
Authors: Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater
Publication information: Preprint (2007)
Abstract: Hash functions are widely used in cryptography. Recent break-
throughs against the standard SHA-1 prompted NIST to launch a competi-
tion for a new secure hash algorithm, SHA-3. Provably secure hash functions,
that is functions whose security reduces to a simply-stated, supposedly hard
mathematical problem, are widely believed to be much too slow for the NIST
competition. In this paper, we discuss Cayley hashes, a class of efficient and
provably secure hash functions constructed from the Cayley graphs of (pro-
jective) linear groups. We review two existing constructions, the ZT and LPS
hash functions, and put a new one forward, the Morgenstern hash function.
We show that Cayley hashes are “provable” and efficient: on one hand, their
security reduces to a representation problem in (projective) linear groups;
on the other hand, they are only 5 times slower than SHA-2 in FPGA hard-
ware, and about 400 times slower in software (in our future implementations,
many optimizations currently under investigation are expected to decrease
these gaps even more). Last but not least, Cayley hash computation can be
easily parallelized. We believe their nice properties as well as their elegant
design make Cayley hashes very interesting hash functions.

A.2 Physical security

Title: Fault Attacks on Public Key Elements: Application to DLP based
Schemes
Authors: Chong Hee Kim, Philippe Bulens, Christophe Petit, and Jean-
Jacques Quisquater
Publication information: Proceedings of the Fifth European PKI Work-
shop - EUROPKI 2008
Abstract: Many cryptosystems suffer from fault attacks when implemented
in physical devices such as smart cards. Fault attacks on secret key elements
have successfully targeted many protocols relying on the Elliptic Curve Dis-
crete Logarithm Problem (ECDLP), the Integer Factorization Problem (IFP)
or the Discrete Logarithm Problem (DLP). More recently, faults attacks have
also been designed against the public key elements of ECDLP and IFP-based
schemes. In this paper, we present the first fault attacks on the public key
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elements of DSA and ElGamal, two DLP-based signature schemes. Our at-
tacks fully recover a 160-bit DSA secret key and a 1024-bit ElGamal secret
key with ∼ 4 · 107 and ∼ 3 · 106 faulty signatures respectively. Such fig-
ures might suggest that DLP-based schemes are less prone to fault attacks
than ECDLP- and IFP-based schemes. However, the integrity of public keys
should always be checked in order to thwart such attacks since improvements
may reduce the required amount of faulty signatures in the near future.

Title: A Block Cipher based Pseudo Random Number Generator Secure
Against Side-Channel Key Recovery
Authors: Christophe Petit, François-Xavier Standaert, Olivier Pereira, Tal
G. Malkin, Moti Yung
Publication information: ASIACCS ’08: Proceedings of the 2008 ACM
symposium on Information, computer and communications security
Abstract: We study the security of a block cipher-based pseudorandom
number generator (PRNG), both in the black box world and in the physical
world, separately. We first show that the construction is a secure PRNG in
the black box world, relying on standard computational assumptions. Then,
we demonstrate its security against a Bayesian side-channel key recovery ad-
versary. As a main result, we show that our construction guarantees that the
success rate of the adversary does not increase with the number of physical
observations, but in a limited and controlled way. Besides, we observe that,
under common assumptions on side-channel attack strategies, increasing the
security parameter (typically the block cipher key size) by a polynomial fac-
tor involves an increase of a side-channel attack complexity by an exponential
factor, as usually expected for secure cryptographic primitives. Therefore, we
believe this work provides a first interesting example of the way the algorith-
mic design of a cryptographic scheme influences its side-channel resistance.
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Appendix B

Some mathematics and
computer science background

B.1 Computational complexity theory

The security of cryptographic algorithms most often relies on the hardness
of some computational problems. The relative hardness of these problems is
characterized by computational complexity theory, a branch of the theory of
computation initiated by Alan Turing.

Complexity theory characterizes the amount of resources needed to solve
computational problems asymptotically (when the size of the problem in-
creases) and no matter of the actual computing device that is used. Let f(x)
and g(x) be two real functions. We say that f(x) is O(g(x)) or that g(x) is
Ω(f(x)) if there exists a positive real number M and a real number x0 such
that x > x0 ⇒ |f(x)| ≤M |g(x)|. We say that f(x) is θ(g(x)) if it is O(g(x))
and Ω(f(x)). We say that f(x) is o(g(x)) if limx→∞ f(x)/g(x) = 0.

Since the work of Alan Turing, algorithms are modeled by Turing ma-
chines. In this thesis, we use a non-uniform computation model, meaning
that a different Turing machine can be used for each input size (we refer
to [137] for a formal definition of this model). We say that an algorithm runs
in probabilistic polynomial time (PPT ) if its expected running time on inputs
of size x is O(xn) for some n.

A fundamental distinction in complexity theory is made between the al-
gorithms running in polynomial time and other algorithms. A decisional
problem is a problem which answer is 0 or 1. A complexity class is a class
of problems that can be solved with the same computational resources. The
complexity class P is the class of decisional problems that can be solved in
deterministic polynomial time. The complexity class NP is the class of de-
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cisional problems whose positive answer can be verified in polynomial time
given the right information. A very important question in complexity theory
is whether P=NP, that is whether all decisional problems that can be verified
in polynomial time can also be solved in polynomial time. A problem is NP-
complete if it is in the class NP and if its belonging to P is equivalent to the
belonging to P of any problem of NP. Some known NP-complete problems
are the SAT problem, the knapsack problem, the subset sum problem or the
Hamiltonian path problem. Similarly, a problem is in PSPACE if it can be
solved with a polynomial amount of memory, and it is PSPACE-complete
if its belonging to P is equivalent to the belonging to P of any PSPACE
problem. We refer to textbooks (for example [29]) for rigorous definitions of
these concepts.

Despite its usefulness at characterizing the complexity of problems, com-
putational complexity theory is irrelevant for cryptography. First, it only
describes asymptotic hardness, while for example knapsack problems might
very well be easy for parameters of practical sizes and become difficult only
for very large parameters. Second, it only characterizes worst-case hardness,
meaning that NP-complete problems may be hard only for some very spe-
cific parameters and easy in average, while hardness on average would be
required for cryptography. Finally, we point out that the complexity of most
used “hard problems” in cryptography, the discrete logarithm, the factoriza-
tion and the elliptic curve discrete logarithm problems, is only known based
on existing attacks and not in the sense of computational complexity theory.

In a sense, cryptography needs its own complexity theory based on aver-
age complexity rather than worst-case complexity. Many results in the lit-
erature prove the existence or non-existence of certain cryptographic prim-
itives based solely on the existence of other primitives. Impagliazzo [136]
summarized these results into five possible “worlds” somehow reminiscent of
complexity classes in computational complexity theory. (A synthetic view
of these worlds can be found in [226].) In the world MiniCrypt, private key
encryption, pseudorandom generators, one-way functions and digital signa-
tures exist since each of these primitives exists if one of them exists. The
world Cryptomania additionally contains trapdoor permutations, hence pub-
lic key encryption, oblivious transfer and key agreement protocols. We refer
to [136, 226] and the pointers provided there for further information.

B.2 Matrix theory

We refer to standard textbooks (for example [160]) for elementary notions
of matrix theory, including addition and multiplication of matrices; deter-
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minant, inverse and rank of a matrix; eigenvalues and eigenvectors; singular
value decomposition; matrix norms and the equivalence of matrix norms;
symmetric and normal matrices; positive matrices and the Perron-Frobenius
theory.

B.3 Groups and fields

A group (G,⊕) is made of a set G and an operation ⊕ : G×G→ G on the
elements of G, such that

1. Associativity: for all a, b, c ∈ G, we have (a⊕ b)⊕ c = a⊕ (b⊕ c);

2. Identity: there exists an identity element e in G, such that for all
a ∈ G, a⊕ e = a = e⊕ a;

3. Inverse element: for all a ∈ G, there exists b ∈ G such that a⊕ b =
b⊕ a = e, where e is the identity element.

A group (G,⊕) is sometimes simply written G when the group operation is
clear from the context. A group G is finite if G has only a finite number of
elements. The order of a finite group is the number of its elements. A group
is called Abelian or commutative if for all a, b ∈ G, a⊕ b = b⊕ a; otherwise
it is called non-Abelian or non-commutative. A subgroup H of a group G is
a subset of G that is also a group for the same operation law.

Given a set of elements S = {g1, g2, ...gk} ⊂ G, the subgroup generated by
S is the subgroup made of any element of the form ge1⊕ge2⊕ ...⊕gen for any
integer n and any elements gei ∈ S ∪S−1 where S−1 is the set containing the
inverses of the elements of S. The rank of a group G is the minimal number
of elements needed to generate it. Groups of rank 1 are called cyclic groups
and are Abelian. The order of an element g ∈ G is the order of the subgroup
it generates.

A subgroup H of a group G defines left cosets and right cosets in G as
follows: for any element g ∈ G, the left coset of H containing g is gH :=
{g ⊕ h|h ∈ H} (the right coset is defined similarly). A subgroup H is called
normal if for all g ∈ G, gH = Hg. The quotient group G/H of a group G by
one of its normal subgroups H is a group that results from identifying two
elements g1, g2 ∈ G iff g1 = g2⊕h for some h ∈ H. A simple group is a group
which is not the trivial group (the group made of only the identity element)
and whose only normal subgroups are the trivial group and the group itself.

A group homomorphism is a map between two groups that preserves the
group structure: if (G,⊕) and (H,�) are two groups, a group homomorphism
ϕ : G→ H satisfies ϕ(g1⊕g2) = ϕ(g1)�ϕ(g2) for all g1, g2 ∈ G. A character
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χ of a cyclic group G is a group homomorphism χ : G → C. A linear
representation of a group G is a group homomorphism G → GL(n,C) for
some integer n ≥ 1.

A field (K,+, ∗) is a set K together with two operations + : K×K → K
and ∗ : K ×K → K acting on it, such that

1. (K,+) is a group with identity element written 0.

2. (K∗, ∗) is a group with identity element written 1, where K∗ := K\{0}.

3. Distributivity: for any a, b, c ∈ K, a ∗ (b+ c) = (a ∗ b) + (a ∗ c).

The operations + and ∗ are respectively called addition and multiplication
laws and the groups (K,+) and (K∗, ∗) are respectively called additive and
multiplicative groups of the field K. A finite field is a field whose number
of elements is finite. An isomorphism between two fields K1 and K2 is a
bijective map that is a group homomorphism for both the additive and the
multiplicative groups.

In this thesis, we mainly work with finite groups and fields. For each
prime p, the set of “integers modulo p” (that results from identifying two
integers z1, z2 if and only if z1 = z2 + kp for some integer k) is a finite field
denoted Fp for the usual addition and multiplication operations. Both its
additive and multiplicative groups are cyclic groups.

A monic irreducible polynomial P (X) over a field K is a polynomial with
coefficients in K whose coefficient of higher degree is e (the neutral element
of K) and that cannot be factored, meaning there do not exist polynomials
Q(X), R(X) such that P (X) = Q(X)R(X) and deg(Q), deg(R) < deg(P ).
For each prime p and monic irreducible polynomial Pn(X) of degree n over Fp,
the set of “polynomials over Fp modulo Pn(X)” is a finite field denoted Fpn
for the usual addition and multiplication operations on polynomials. This
field is called an extension field of Fp. Both its additive and multiplicative
groups are cyclic groups. Actually, any finite field is isomorphic to a field
Fpn for some p and n. The characteristic of a field Fpn is p.

The most important groups for cryptography are the multiplicative groups
of finite fields Fp and F2n , and the group of points on some elliptic curves (see
Section B.5) because the discrete logarithm problem is believed to be hard in
these groups. In this thesis, we also work with the general linear groups and
special linear groups GL(2, K) and SL(2, K) that are 2 × 2 matrices with
coefficients in K that in the case of SL(2, K) have a determinant equal to
the identity element.
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We refer to [166] for a very complete description of finite groups. The
theory of finite fields can be found in any textbooks including [253]. Repre-
sentation theory for finite groups is explained in [240].

B.4 Quaternion algebras

An algebra A over a field K is a vector space over K that has a multiplicative
law ⊗ : V ×V → V that is associative and distributive: for all x, y, z ∈ A and
all a ∈ K, it satisfies (x⊗y)⊗z = x⊗ (y⊗z), (x⊕y)⊗z = (x⊗z)⊕ (y⊗z),
x⊗ (y⊕ z) = (x⊗y)⊕ (x⊗ z) and a · (x⊗y) = (a ·x)⊗y = x⊗ (a ·y). In the
following we write all additive symbols by + and we omit all multiplicative
symbols. A division algebra is an algebra with a division operation, meaning
that there is a neutral element 1 and any non-zero x ∈ A has an inverse x−1

such that xx−1 = x−1x = 1.

A quaternion algebra is an algebra of dimension 4 of a particular kind.
When the characteristic of K is not 2, a quaternion algebra has a basis
(1, i, j,k) such that i2 = a, j2 = b, k = ij = −ji for some a, b ∈ K∗. When
the characteristic of K is 2 the basis (1, i, j,k) satisfies i2 + i = a, j2 = b,
k = ij = ji + j for some a, b ∈ K∗. The elements of a quaternion algebra are
called quaternions. The conjugate of any quaternion q = a+ bi+ cj+dk ∈ A
is the quaternion q̄ := a− bi− cj− dk when the characteristic is not 2, and
q̄ := a + b(i + 1) + cj + dk otherwise. The trace of a quaternion q ∈ A is a
field element t ∈ K defined by t = Tr(q) := q+ q̄. The norm of a quaternion
q ∈ A is a field element n ∈ K defined by n = N(q) := qq̄ = q̄q.

A quaternion algebra is isomorphic either to a division algebra or to the
2× 2 matrices. Let A be a quaternion algebra over Q and let v be a place of
Q with completion Qv (that is, Qv is either the real numbers if v =∞ or the
p-adic numbers if v = p for some prime p). Then A is split or unramified at
v if A becomes isomorphic to the 2× 2 matrices over Qv, and A is non-split
or ramified at v if A becomes isomorphic to the division quaternion algebra
over Qv.

Let A be an algebra finitely generated over Q. An order O of A is a
subalgebra of A that is finitely generated over Z and which tensor product
with Q is A. A maximal order in A is an order of A that is not contained in
any larger order.

We refer to the standard textbook [161] for more details on algebra.
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B.5 Elliptic curves

An elliptic curve over a field K is a set of points (x, y) ∈ K2 satisfying an
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

of the equation) together with a “point at infinity” O with no singular point
(no point being a “double solution”); we will write this set E(K) or simply
E. When the characteristic of K is neither 2 nor 3, the curve can be given
in Weierstrass form

E : y2 = x3 + a4x+ a6

by changing coordinates. The set of points of an elliptic curve can be given
an Abelian group structure with O as neutral element; additions formulae are
given in [248], Section 3.2. The l-torsion of an elliptic curve is the subgroup
made of the points of order dividing l in any sufficiently large extension of
K.

Elliptic curves as groups have become very important in cryptography
since their introduction in 1985 by Koblitz [154] and Miller [186]. Under
some conditions, the discrete logarithm problem on elliptic curves is believed
to be much harder than the discrete logarithm problem on the multiplicative
group of finite fields of equal size.

Two elliptic curves E and E ′ are isomorphic if there exists a change of
coordinates mapping the points of E to the points of E ′; isomorphic curves
are often thought of as a single curve represented by two different equations.
Isomorphic elliptic curves have a same j-invariant, defined for Weierstrass

equations by j(E) := 1728
4a3

4

4a3
4+27a2

6
.

Given two elliptic curves E,E ′ defined over the same field, a homomor-
phism from E to E ′ is a rational map preserving the group addition. An
isogeny from E to E ′ is a non-zero homomorphism; its degree is the cardi-
nality of its kernel. An isogeny from E to itself is called an endomorphism.
The set of endomorphisms of an elliptic curve is a ring and is isomorph either
to Z, to an order in a quadratic number field or to an order in a quaternion
algebra. An isogeny of degree 1 is called an automorphism.

When K is a finite field Fq of characteristic p, an elliptic curve over Fq
is supersingular if for every finite extension Fqr , the curve E(Fqr) has no
point of order p. The j-invariants of supersingular elliptic curves are called
supersingular j-invariants. The endomorphism ring of a supersingular elliptic
curve is an order in a quaternion algebra.

The main reference on elliptic curves is Siverman’s book [248]. For elliptic
curve cryptography, a good reference is Blake et al.’s book [47]. Beginners
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will find easier to start with Joye’s master thesis [147].
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Appendix C

LPS and Morgenstern
computation for l = 5 and q = 2

C.1 LPS hash function with l = 5

If l = 5, the 6 graph generators for LPS hash function are

s±1 =

(
1± 2i 0

0 1∓ 2i

)
, s±2 =

(
1 ±2
∓2 1

)
, and s±3 =

(
1 ±2i
±2i 1

)
.

Let M =

(
a0 + a1i b0 + b1i
c0 + c1i d0 + d1i

)
with a0, a1, b0, b1, c0, c1, d0, d1 ∈ Fp. The

following equalities result from i2 = −1.

Ms±1 =

(
(a0 ∓ 2a1) + (a1 ∓ 2a0)i (b0 ± 2b1) + (b1 ∓ 2b0)i
(c0 ∓ 2c1) + (c1 ∓ 2c0)i (d0 ± 2d1) + (d1 ∓ 2d0)i

)
,

Ms±2 =

(
(a0 ∓ 2b0) + (a1 ∓ 2b1)i (b0 ± 2a0) + (b1 ± 2a1)i
(c0 ∓ 2d0) + (c1 ∓ 2d1)i (d0 ± 2c0) + (d1 ± 2c1)i

)
,

Ms±3 =

(
(a0 ∓ 2b1) + (a1 ± 2b0)i (∓2a1 + b0) + (±2a0 + b1)i
(c0 ∓ 2d1) + (c1 ± 2d0)i (∓2c1 + d0) + (±2c0 + d1)i

)
.

Computing each of these formulae only requires 8 multiplications by 2
and 8 additions in Fp. A multiplication by 2 amounts to shifting the bits,
testing the left-most bit and adding p if this bit is 1, that is every two times
in mean. An addition in Fp amounts to an integer addition plus another
addition by −p if the left-most bit of the result is 1, that is every two times
in mean. As log2 5 bits are processed by step, the cost per bit is therefore
about 7.75 additions and 3.45 one-bit shifts per bit of message.
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C.2 Morgenstern hash function with q = 2

When q = 2, the 3 graph generators of Morgenstern hash are

s0 =

(
1 1
X 1

)
, s1 =

(
1 i

X(1 + i) 1

)
, and s2 =

(
1 1 + i
Xi 1

)
.

Let M =

(
a0 + a1i b0 + b1i
c0 + c1i d0 + d1i

)
with a0, a1, b0, b1, c0, c1, d0, d1 ∈ F2n .

The following equalities result from i2 + i + 1 = 0.

Ms0 =

(
(a0 + b0X) + (a1 + b1X)i (a0 + b0) + (a1 + b1)i
(c0 + d0X) + (c1 + d1X)i (c0 + d0) + (c1 + d1)i

)
,

Ms1 =

(
(a0 + b0X + b1X) + (a1 + b0X)i (a1 + b0) + (a0 + a1 + b1)i
(c0 + d0X + d1X) + (c1 + d0X)i (c1 + d0) + (c0 + c1 + d1)i

)
,

Ms2 =

(
(a0 + b1X) + (a1 + b0X + b1X)i (a0 + a1 + b0) + (a0 + b1)i
(c0 + d1X) + (c1 + d0X + d1X)i (c0 + c1 + d0) + (c0 + d1)i

)
.

Computing the last two formulae only requires 4 multiplications by X
and 12 additions in F2n , and in the first formula the number of additions
is even reduced to 8. A multiplication by X amounts to shifting the bits,
testing the left-most bit and xoring with Pn(X) if this bit is 1, that is every
two times in mean. In mean, the cost per bit of message is about 4 one-bit
shifts and 12.67 XORs.



Appendix D

Generation of ZesT’s constants

Here is the C++ code that we have used to generate the constants Pn(X)
and ( a0 b0 ) in the fixed-key version of ZesT.

#include <time.h>

#include <fstream>

#include <iomanip>

#include <NTL/GF2.h>

#include <NTL/vec_GF2.h>

#include <NTL/GF2XFactoring.h>

#include <NTL/mat_GF2.h>

NTL_CLIENT

void getparam(GF2X& pol, vec_GF2& a0,

vec_GF2& b0, int n, uint16_t init);

int main(int argc, char * argv[])

{

// n = 223,251,383,509

int n ;

sscanf(argv[1], "%d", &n);

cout<<"n is "<<n<<endl;

// for init we start from the binary representation of pi

// 11.001001000011111101101010100010
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uint16_t init = 0xc90f ;

cout<<"init is set to "<<init<<endl;

GF2X pol = GF2X() ;

vec_GF2 a0 = vec_GF2(INIT_SIZE, n);

vec_GF2 b0 = vec_GF2(INIT_SIZE, n);

// get the parameters

getparam(pol,a0,b0,n, init);

}

// Returns a polynomial of the form

// x^n+ 1 + pol(LFSR(seed))

// and two constant a0 and b0 ’pseudorandom’

void getparam(GF2X& pol, vec_GF2& a0,vec_GF2& b0,

int n, uint16_t init)

{

// Form the first polynomial

SetCoeff(pol,n,1);

SetCoeff(pol,0,1);

// The lfsr we choose is the Fibonacci lfsr defined by

// the polynomial x^16 + x^14 +x^13 +x^11 +1

int i,bit = 0;

uint16_t reg = init ;

for (i =1;i<n;i++)

{

bit = (reg ^ (reg >> 2)

^ (reg >> 3) ^ (reg >> 5))

& 1;

reg = (reg >> 1) | (bit << 15);

SetCoeff(pol,i,bit);

}

// check irreducibility

int flag = IterIrredTest(pol) ;

// update polynomial with the LFSR

// until you get an irreducible polynomial
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while(!flag)

{

i++;

cout<<"i is "<<i<<endl<<endl;

// modify the polynomial

bit = (reg & 0x0001) ^ ((reg & 0x0004) >> 2)

^ ((reg & 0x0008) >> 3) ^ ((reg & 0x0020) >> 5);

reg = (reg >> 1) | (bit << 15);

SetCoeff(pol,0,0);

RightShift(pol,pol,1);

SetCoeff(pol,0,1);

SetCoeff(pol,n-1,bit);

SetCoeff(pol,n,1);

// check irreducibility

flag = IterIrredTest(pol) ;

}

// Compute the constants a0 and b0

for(i=0;i<n;i++)

{

bit = (reg & 0x0001) ^ ((reg & 0x0004) >> 2)

^ ((reg & 0x0008) >> 3) ^ ((reg & 0x0020) >> 5);

reg = (reg >> 1) | (bit << 15);

b0.put(i,bit);

}

for(i=0;i<n;i++)

{

bit = (reg & 0x0001) ^ ((reg & 0x0004) >> 2)

^ ((reg & 0x0008) >> 3) ^ ((reg & 0x0020) >> 5);

reg = (reg >> 1) | (bit << 15);

a0.put(i,bit);

}

}
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Appendix E

Examples for our algorithms of
Chapter 6

E.1 Toy example of the preimage-finding (path-

finding) algorithm in the LPS graph

As an example of our preimage algorithm, we now give a second preimage
for the message m =“This is not for NIST”, when the parameters are p =
1125899906842769 and l = 5. The ASCII code for m is 01010100 01101000
01101001 01110011 00100000 01101001 01110011 00100000 01101110 01101111
01110100 00100000 01100110 01101111 01110010 00100000 01001110 01001001
01010011 01010100 which in base 5 gives 30232314430000323121040012440301
3421040324420122212133431310442432021. We start at the identity, with g0

the identity and the starting edge (s−1 1, I). We identify the six graph gener-
ators

s±1 =

(
1± 2i 0

0 1∓ 2i

)
, s±2 =

(
1 ±2
∓2 1

)
s±3 =

(
1 2i
2i 1

)
with their indices. The function π we choose is given in figure E.1. The hash
value obtained is

M =

(
1113908155375639 815055784352014
485525153198538 30164330826615

)
.

We apply our path-finding algorithm on M . First, we get a matrix de-
composition as in Section 6.2. After 11 trials, the resulting λ, α, ω, β1 and
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Table E.1: Function π: the table gives the index of the next matrix for a
given current matrix and a given base 5 digit.

-3 -2 -1 1 2 3
0 -3 3 2 1 -1 -2
1 2 -3 3 2 1 -1
2 -1 -2 -3 3 2 1
3 1 -1 -2 -3 3 2
4 2 1 -1 -2 -3 3

β2 values are

λ = 1051846637406052

α = 698130975272599

ω = 846326642296745

β1 = 150389273084944

β2 = 480539407839455.

Then we factorize

Mα :=

(
1 0
0 α

)

= =


349065487636300 0

+i795285597612250
0 349065487636300

−i795285597612250

 .

We choose k = 48, resulting in λ =222458048101540 and
m =11210387681441600668869823936886993015607319565640625. After 234
random trials for x, we finally get x = 523712450310834, w = 207632734870715,
and n = 4.2489205976128525372183128649803320961. The Euclidean algo-
rithm gives us the solution y =2782001231666122912, z =1489057773063985790.

So the lift of Mα is M̃α =
311426103887630914544037511835 3132254927569356406015273012423328

+i766565480745454184887163124346 +i1676530007976242663293697980252510
−3132254927569356406015273012423328 311426103887630914544037511835
+i1676530007976242663293697980252510 −i766565480745454184887163124346

 .

We multiply M̃α by each of the lifts of the graph generators. Since M̃αs̃3 is
divisible by l = 5, s̃−3 is the last (right-hand) factor of M̃α. After 2k steps,
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we get the whole factorization of M̃α, which we translate into a factorization
of Mα whose indices are 3 -1 2 2 3 1 1 3 1 3 3 3 2 2 3 -1 2 1 1 -3 1 1 1 3 -1
2 -3 2 3 1 -2 -2 -2 1 2 1 1 -3 2 1 2 1 -2 3 -1 3 2 -3 -2 3 1 -2 3 3 2 -3 -1 2 2 2
-1 -3 -1 -3 2 3 1 2 -3 -1 3 2 2 1 3 -2 -3 1 3 -2 -1 -2 3 1 3 2 1 -2 -1 -1 -3 2 1 1
-2 -3. We get the factorizations of Mω, Mβ1 and Mβ2 the same way. Finally,
we put all the pieces of information together and get the sequence -3 -2 1 1
2 -3 -1 -1 -2 1 2 3 1 3 -2 -1 -2 3 1 -3 -2 3 1 2 2 3 -1 -3 2 1 3 2 - 3 -1 -3 -1 2 2
2 -1 -3 2 3 3 -2 1 3 -2 -3 2 3 -1 3 -2 1 2 1 2 -3 1 1 2 1 -2 -2 - 2 1 3 2 -3 2 -1 3
1 1 1 -3 1 1 2 -1 3 2 2 3 3 3 1 3 1 1 3 2 2 -1 3 2 3 -1 -3 -2 -2 1 3 2 -3 -3 2 3 -2
-3 -3 -2 -1 -2 3 1 1 2 3 2 1 1 -3 1 2 2 1 -2 1 1 2 -3 -2 3 -2 -3 1 1 3 1 2 1 -3 -1
-3 -3 -1 2 3 1 -3 -3 -1 -1 2 -1 3 -2 1 -3 -3 -1 -2 1 1 -2 -1 -1 3 -2 3 2 2 1 -3 -2
-1 -3 -1 -3 -1 3 2 -1 3 3 -2 -1 -2 1 1 2 2 -3 -1 3 2 2 -3 -2 -3 -1 -3 1 -3 -2 -1 3 1
-2 3 -2 3 2 1 3 -2 -2 -3 -3 -2 -2 3 -2 -2 -3 -1 3 1 3 -1 -3 -3 -3 -3 -2 1 3 3 1 -2 3
-1 -2 1 2 -3 1 -2 -2 1 -2 -2 -1 2 2 2 2 2 1 -3 1 1 2 1 1 3 3 -1 3 3 -2 -1 3 1 2 -1
2 3 -1 2 -3 -2 1 -2 1 1 3 -2 2 -2 -3 -2 -1 3 3 -2 -1 3 2 -3 2 3 -2 1 1 1 1 -2 1 1 2
-1 3 -1 -2 -1 -2 -1 -2 -2 3 2 1 3 - 2 -2 -3 -3 -2 3 3 2 1 1 1 1 3 2 -1 -3 2 -3 -2 -1
-3 1 -2 -2 -2 1 -2 -1 -2 -1 2 - 1 -3 -1 -3 -2 -1 -2 -3 -1 -3 -1 2 2 3 3 -2 -2 -2 -3
-1 -1 -1 2 -3 -1 3 -1 2 -3 - 3 that collides with the original message “This is
not for NIST”.

E.2 Second preimage of “This is not for NIST”

for LPS hashes with 1024-bit parameters

Now we repeat what we did in Appendix E.1, this time for
p = 1797693134862315907729305190789024733617976978942306572734300811
5773267580550096313270847732240753602112011387987139335765878976881
4416622492847430639474124377767893424865485276302219601246094119453
0829520850057688381506823424628814739131105408272371633505106845862
98239947245938479716304835356329624224139329, which has 1024 bits. The
sequence we get is 3 1 3 3 2 3 2 3 -2 -1 -2 1 -3 1 2 -1 -3 -2 -3 -1 2 -1 -1 -3 -2 -2 -3 1 2 -3 -3 2 -1 3 2 2 2 -3 -3 1

1 2 -1 3 -2 -2 1 1 -2 -3 2 -3 -3 1 3 1 3 -2 3 2 3 2 3 3 -2 1 1 -2 3 1 3 -2 1 3 1 -3 1 3 3 1 2 2 1 1 1 -2 3 -1 -1 -2 3 2 3 1 3 1 -3

1 1 -3 2 2 1 3 -1 -3 1 2 3 -2 3 2 1 3 2 1 2 3 3 -2 1 2 -1 3 1 3 1 3 -1 3 2 -3 -1 -2 -3 2 -3 -1 -2 3 1 2 -3 -3 -1 -3 -3 -3 -1 -3 -3 1

3 3 3 -2 -1 -2 -2 3 3 1 -2 -2 -2 1 -2 3 1 -3 2 -1 2 3 3 2 1 1 -3 -2 -3 1 -3 -3 -2 -1 -1 -2 -2 -3 -2 -1 2 -3 -3 -3 1 2 -3 -2 -1 2 1 3 3

-2 1 -3 2 3 -2 3 1 -3 -2 -1 3 3 1 3 -1 -2 1 2 -3 -1 3 3 -1 3 -1 -2 3 3 2 2 -3 2 1 2 -1 2 2 -3 -2 -2 1 -3 -3 1 2 2 -3 -1 -3 1 2 -3 2 2

-3 -3 -1 -1 -1 2 1 2 3 -1 -1 3 2 2 -3 -2 1 3 -2 3 -1 3 -2 -2 1 2 1 1 2 -1 -1 -1 3 -1 2 2 2 -1 -3 -3 -3 1 -3 -1 -1 -1 3 3 3 3 -2 -2 3

-1 3 2 -3 1 2 2 -1 -1 3 -2 3 -2 -1 3 -2 3 -2 3 -2 -1 2 1 3 1 -2 3 2 2 3 -1 -1 3 2 2 3 -2 3 -1 -3 2 3 -2 3 1 -3 - 3 -2 -2 1 2 1 3 1 -3

-2 -1 2 2 2 -1 3 3 2 2 2 2 3 3 -1 -1 -1 -3 -2 3 1 2 -1 -2 1 -3 -1 3 -2 -3 1 -3 -2 -2 -1 -1 -1 -1 -3 -3 2 2 1 -3 -3 -2 -3 -1 -3 2 -3 1

-2 1 1 -3 -1 -3 -2 -1 -3 -1 -1 3 3 1 3 -2 3 -2 -3 -1 2 2 3 -1 3 -2 -3 1 3 3 2 2 3 1 1 -3 -1 -3 -1 -2 -2 -1 -3 -3 1 -2 -2 -1 3 3 1 -3

-1 -1 -3 2 3 -1 3 -2 -3 2 -3 -2 1 -3 -1 -1 -2 3 -2 -2 -3 1 -2 -2 -2 3 -1 2 3 -1 2 3 -1 -2 -1 3 -2 1 2 2 3 1 2 -1 2 1 -3 -3 -2 3 3 1 2
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-3 1 2 1 -2 -1 2 -3 1 2 -3 -3 -1 -1 -3 2 1 3 -1 2 3 3 -2 - 3 1 3 1 -3 -1 -3 2 -1 -3 -3 -1 3 3 -2 -1 -2 1 3 -2 -3 2 1 -2 -1 3 -2 1 2 -1

2 3 1 -2 -3 1 -2 -2 -1 -2 -2 -2 3 2 1 2 -3 -2 -1 -3 1 -3 -2 -2 -1 -2 3 -2 -2 -1 -3 - 3 1 -3 1 3 2 -3 -2 3 3 1 -3 -2 1 3 2 1 3 -2 3 -1

2 -3 -3 2 3 1 -2 -1 -3 -3 1 3 - 2 -3 -2 1 2 1 -3 -1 -2 -3 -3 1 2 3 2 1 1 -3 -3 -2 3 3 3 2 -3 1 -2 1 -2 3 -2 1 3 3 3 2 1 3 1 3 2 1 1

2 -1 -2 1 3 -1 -3 -1 3 3 2 -3 1 3 1 -3 -2 -1 2 2 -3 1 3 3 3 -2 3 3 1 1 3 -2 1 1 1 2 1 -3 -3 -3 -2 -1 -2 -1 3 3 2 -3 1 2 1 -3 1 -3 -3

-2 -2 3 2 2 3 -2 -2 -1 2 -3 -3 2 2 -3 -3 2 -1 -1 -3 2 -3 1 2 1 3 -2 -3 1 -2 1 3 2 -3 -3 -3 -2 -2 1 2 -3 1 2 -1 -1 -3 -2 3 2 2 2 -1 -3

-1 2 1 -2 -2 3 3 2 2 3 -1 -1 -2 - 3 2 3 -2 1 1 -2 -1 -1 -2 1 1 -3 -2 1 1 1 -3 -3 -3 2 2 1 -2 1 -2 -3 1 -3 -1 -2 3 -2 3 1 -3 -1 2 -1 2

-1 -1 3 1 1 -3 -1 -3 2 3 1 -3 -1 2 1 2 -3 1 -3 -2 1 -2 -1 -3 -2 -1 -2 -3 -1 -1 -2 1 -2 1 3 1 3 -2 3 1 3 3 3 3 -1 -2 -3 -1 3 3 -2 -2 -1

-1 3 -1 -2 3 1 -3 1 3 2 3 -2 -2 -3 -2 -2 -1 -2 -3 -1 3 2 1 2 -3 1 2 -3 -2 1 3 3 3 -1 3 2 -1 -2 1 -3 -1 -2 -2 -3 2 1 1 2 2 2 1 2 -1 -2

1 1 2 2 3 -2 1 3 3 -2 -1 -3 2 3 3 -2 -1 2 -3 1 1 1 -2 -2 -3 1 -2 3 -1 3 2 3 3 -2 1 2 1 -3 -2 -2 -2 -1 3 -1 -3 - 3 -2 -1 -3 1 -3 2 -1

2 1 2 1 3 3 3 -1 -1 -2 1 2 -1 -1 3 -2 1 2 3 -1 3 -1 2 -3 -2 -3 1 -2 -3 2 3 3 2 -1 -2 1 -2 -1 -3 -2 -1 -2 3 -1 3 2 -3 -3 -1 3 1 -3 2

-1 -1 2 -3 -3 1 -2 1 -3 -1 2 3 1 1 -2 -3 -2 3 -1 -1 -1 -3 -1 -1 -2 -2 -3 -3 1 -2 -3 2 2 3 3 2 1 3 2 -3 -2 -2 1 2 2 3 -2 3 2 -1 3 3 1

2 3 -2 3 -2 1 -3 1 3 2 1 1 2 2 -1 2 1 2 3 1 -2 1 1 3 -2 1 -2 -3 -2 3 1 -3 -3 1 1 2 1 -2 -2 3 -1 2 -1 -2 -3 -2 1 3 3 1 -3 2 -1 2 -3 2

3 1 1 1 3 2 3 -2 1 -2 1 -2 1 3 -2 -1 2 -3 -1 3 2 -3 1 -2 -1 - 2 -2 -1 2 1 -3 -1 2 -1 -3 2 -1 -1 2 2 -3 -3 1 2 1 3 -1 3 1 2 2 -3 2 -1

2 2 1 1 - 3 -1 -1 -1 3 3 -2 -2 3 -1 -2 -1 3 1 3 3 -2 1 -3 -2 -2 1 -2 1 -2 -1 -3 2 2 -1 -2 -1 -2 -1 -3 -2 -1 -1 2 2 2 2 -3 -2 -2 -2 1 3

1 -2 -3 -1 -1 -2 3 2 3 -1 3 2 -1 -2 3 -1 2 -3 -2 -2 -2 3 -1 3 2 -1 2 2 -1 -3 1 -3 -3 2 1 -2 -1 -2 1 -2 -2 1 2 1 -3 -3 -1 -1 -1 2 -3 -2

-3 1 -2 1 1 1 -2 -2 -1 -1 3 1 2 1 3 -2 -1 -2 3 2 2 2 -3 1 3 1 3 -2 3 -2 -2 -3 -2 -3 -3 2 3 -2 1 1 3 1 -2 -3 -2 -2 1 2 -3 -2 -2 -1 -1

2 -1 -2 3 2 3 -1 -2 3 2 3 -2 -2 -2 1 2 1 -2 3 2 3 -1 -3 -1 -1 3 -1 -2 1 -2 1 2 3 -1 3 1 2 -1 2 1 1 2 3 2 -3 -3 -3 -2 -3 -3 2 -3 -1 3

3 2 2 1 -3 -2 -3 -3 -1 3 -2 -2 -1 3 -1 -3 2 -3 2 2 -3 2 3 3 2 -1 -2 3 3 2 3 2 2 1 -3 2 1 2 2 2 2 -3 -2 1 -3 1 2 3 3 3 3 -2 -2 1 2 -3

-3 2 3 3 2 -1 -1 3 2 2 2 -1 2 -1 -2 3 2 1 1 -2 -2 -2 3 1 1 3 -2 1 2 2 -3 2 1 1 -3 -3 2 2 -1 -2 -3 -1 -3 -3 -3 -1 -1 -2 1 -3 1 -3 -1 -1

-3 -1 -3 1 2 -3 2 1 -3 2 -3 -2 3 2 -3 1 3 1 -2 -3 -3 -1 -3 -2 -3 2 2 2 3 1 1 2 1 1 1 2 2 -1 -2 -2 3 -1 3 -1 -2 3 -1 -3 1 3 3 1 -3 -2

-1 -3 -1 2 3 -2 -1 -2 -1 -3 -1 -3 -1 2 1 3 -2 -2 3 2 1 -2 3 -1 3 1 -2 -1 -1 -3 -2 1 -3 1 -3 -2 -1 3 -1 -2 -1 3 3 2 3 -1 2 1 -3 2 2 -1

-2 -2 -2 3 3 3 -1 -3 -1 -2 3 -1 -1 3 2 1 1 3 3 3 3 1 2 3 2 -3 -1 -1 3 -2 3 2 -1 -2 -3 1 1 -3 -2 -3 -3 1 -3 2 3 -1 -3 2 -3 2 -1 3 1 1

-3 1 - 2 3 2 3 1 3 -1 2 3 -1 2 -3 -2 -2 -1 3 -2 -2 3 2 3 -2 -3 1 3 2 1 3 3 3 -2 -1 2 -1 3 -1 3 -2 1 1 -3 2 3 2 3 -2 -3 -2 -3 -3 -3 -1

-3 -3 -3 -3 2 -1 2 -1 3 -2 1 1 -3 -1 -3 -2 -1 -1 -3 -1 2 2 2 -1 -1 -2 1 2 3 -2 -3 2 2 -1 3 3 -2 -1 -3 -2 -3 1 -3 -1 2 1 2 1 2 2 -1 3 2

2 -3 -3 1 3 -1 2 1 3 2 -3 -3 1 -2 1 1 2 -1 2 2 -1 2 1 1 3 1 -2 1 -2 -1 -3 -1 -2 -1 -3 1 3 3 1 2 3 1 1 -2 -2 1 -2 -2 -1 -3 1 3 1 -3 -3

-3 - 1 -1 3 -1 -1 -3 2 -3 -3 -1 -2 -1 -2 1 1 2 2 2 1 2 2 -1 2 1 3 3 2 3 3 -1 -3 -1 -2 1 3 1 -2 1 -2 1 -3 -3 -2 1 1 -3 2 2 2 3 1 3 2 2

2 -3 2 -1 -3 1 1 -3 1 -2 3 1 2 -3 -3 1 1 -2 -3 2 -1 3 3 -1 -1 -1 -3 1 -3 -1 2 -1 -1 -1 -1 -3 -3 -2 3 1 1 1 -2 - 1 2 3 2 1 -3 1 1 3 -2

-3 2 -3 -2 -2 3 3 1 3 2 -1 3 1 3 -1 -3 -3 1 1 2 -1 -3 -3 1 3 -2 1 -3 2 2 -3 -3 -2 3 2 -3 2 3 3 2 -1 -3 2 1 2 -3 -3 1 -3 2 3 1 -3 -2

-2 -3 -2 -1 -3 2 -1 -2 -3 -2 -1 3 -2 3 -2 -3 -3 2 2 2 1 2 2 -1 -3 -1 -3 -1 -1 2 2 3 1 -2 3 -1 -2 1 3 1 2 1 3 -2 -2 -2 3 2 2 -1 -2 -1

-3 2 -3 -3 -2 3 3 -1 2 2 -1 3 2 - 3 1 3 -2 1 2 2 -1 -2 -2 -2 -2 -3 2 -3 -2 3 -2 3 3 -1 -2 1 -2 3 3 1 -3 2 1 2 2 -1 3 -1 -3 -1 3 -1 -1

3 1 -3 1 -3 2 2 2 -1 -1 2 2 -3 -3 1 -3 1 -3 -1 -3 1 -3 -2 -2 -3 -3 -2 -1 -2 -3 -3 1 -2 -3 -3 -1 -1 -3 -3 -1 -1 2 1 1 -2 -1 2 2 2 1 -3

2 -1 3 1 1 -3 -1 3 -2 3 2 -3 2 1 -2 3 3 -2 -2 3 3 -1 3 3 -1 3 3 1 1 -2 -1 -1 3 -1 -1 2 -3 -1 -3 2 -3 -3 2 1 2 2 -3 1 3 -1 -3 -1 -3 -2

-1 -3 -3 2 1 2 -3 2 -3 1 2 2 -3 -3 -1 2 2 3 1 -3 -1 -2 3 -2 1 1 -2 1 1 -3 -3 2 -3 -1 -2 -2 -2 -1 -1 -3 -3 1 3 1 1 3 2 3 1 1 -3 -3 -1

-3 -2 -3 -3 2 -1 -1 -3 2 -3 -1 -3 1 -2 -1 3 1 1 -3 1 1 3 -2 -2 -3 -1 -2 3 3 3 3 -2 -3 -3 1 2 2 1 1 1 -2 3 3 -2 3 -1 -3 2 -1 2 3 1 3 2

2 1 2 3 1 1 -3 -3 -1 2 -3 -3 -1 -1 2 -1 2 3 2 1 2 2 3 1 1 1 3 -1 -3 -1 3 2 3 -1 -1 -2 3 1 -3 2 1 2 3 -2 1 1 -2 -1 -3 -1 3 2 2 3 -1

-3 1 -3 -2 -2 3 -1 -1 -1 3 3 -2 3 1 -3 -2 3 -2 -1 3 -1 2 1 -3 -3 -3 2 -1 3 3 -2 3 2 1 3 -2 -3 -2 -3 2 2 1 3 1 -2 1 2 3 1 -2 -3 -2 -3

2 2 2 -1 -3 -3 -3 -1 -2 3 3 2 2 -3 2 3 -2 1 -2 -2 3 2 -3 -1 - 3 -1 -1 2 2 2 1 1 2 1 3 3 2 -3 1 1 -3 -3 -2 1 3 3 -2 3 -2 -1 -1 3 3 3

-2 -3 1 1 -3 -3 2 -1 -2 -2 -2 -1 2 1 -3 1 -2 -1 -2 -2 1 3 3 1 2 2 2 2 1 -3 2 2 3 -1 -3 -1 3 -2 1 -3 -2 -1 -1 3 -2 1 -2 1 3 1 -3 1 3 1

3 -2 1 2 3 -1 2 -1 -3 -2 1 3 1 3 1 3 2 -3 1 1 3 1 -3 -2 -3 -3 2 2 1 1 3 -2 3 1 3 3 -1 -1 3 1 -2 -2 1 1 -3 -2 -2 -1 - 2 -3 -3 1 -2 3 2

2 -1 -1 2 -1 3 2 -1 3 1 -3 -2 1 -2 -3 2 -1 -1 2 -3 2 -3 1 3 1 3 -1 2 3 2 2 -3 1 2 2 2 2 2 3 -2 1 2 -3 -2 -1 -2 3 -1 -2 -3 -2 1 2 -3 2

-1 -2 -2 3 3 -2 -3 -3 -3 -2 -3 -2 -2 1 3 -2 3 -1 -3 -1 -1 3 2 2 3 1 -2 3 3 3 -1 -1 3 3 -2 -1 -1 3 3 -1 2 1 2 -1 2 -1 -3 1 2 1 -3 -1 3
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-1 -2 1 2 -3 -2 -3 -1 -2 1 -2 -2 1 2 -3 2 1 2 -3 -3 -1 -2 -3 -1 2 -1 -2 -3 -3 1 -3 -2 1 2 3 1 2 3 1 -3 -1 2 -3 1 -3 1 1 1 3 -1 -1 -2

-3 2 2 -1 -1 -3 -1 3 -1 -1 3 3 -2 3 -2 -1 -3 -2 -1 -3 -3 1 1 2 2 -3 1 2 1 3 -2 1 -3 2 1 -3 -3 -3 2 3 1 3 3 -1 3 1 3 1 1 1 2 3 -2 -3 1

-2 3 -2 -3 -3 -3 -3 1 3 1 -2 -2 -3 -1 3 -1 -1 -2 -2 1 -2 -3 2 -3 -2 3 -2 -1 -2 -2 3 -2 - 3 -3 -1 -3 2 -1 3 -2 -1 -3 -2 -1 -2 -3 1 1 3 3

-1 3 -2 -3 -3 -2 -2 -2 3 2 -1 -2 3 1 3 -2 1 -2 3 1 1 3 -2 1 3 -1 -3 -3 1 -2 -2 3 -1 -2 -2 1 2 1 -2 -1 2 1 -2 1 -2 -3 -2 -3 1 2 -1 -2

-2 -3 -3 -2 -3 1 1 1 3 1 -3 -3 -1 -3 1 -3 -3 -2 -2 -1 -1 3 1 -2 -1 -1 2 3 -2 1 3 -1 -3 -2 -2 -2 3 -1 -3 -3 -3 -1 -1 -3 2 1 3 2 -3 -1

-1 -3 - 2 -1 3 -2 -3 1 2 2 -3 -3 2 -3 -3 1 -2 -2 -1 -1 3 -2 -1 3 -2 -2 -3 2 -3 -1 -1 -1 -2 -1 -2 -3 2 1 3 -1 -3 -1 3 1 -3 -1 -2 -1 -2

-3 2 1 2 1 1 2 2 3 1 2 -1 -3 1 1 3 2 1 2 3 2 -1 3 2 2 3 -1 -3 -2 -3 -1 2 -3 -3 2 -1 2 -1 -1 -2 -2 3 2 2 1 2 -3 -3 -3 -2 -2 -1 2 -3 -1

2 1 -2 1 -2 -3 -1 3 -2 1 3 1 1 1 1 -3 1 -3 -3 1 3 -1 -3 2 -1 3 2 2 1 1 -2 -2 -3 2 -3 1 -2 3 -1 -3 1 1 -2 -2 3 3 -1 2 1 -3 -2 3 -1 -2

3 3 -1 -2 -2 -1 -3 2 1 -3 2 -1 -3 2 -3 -2 1 2 -1 2 1 2 -1 -2 -3 -3 -1 -3 2 3 -2 -2 1 1 -3 2 -3 -3 1 -3 -3 2 -1 2 -3 -1 -2 1 1 -3 1 3 3

-1 2 3 1 3 3 2 3 3 -1 -3 -2 -3 - 3 -3 1 2 3 -1 -2 -3 -3 1 -3 2 -1 3 1 2 1 -3 -2 -1 -1 -3 -2 -2 -2 3 3 -1 2 2 3 1 -2 -3 -1 -2 1 3 1 2

-3 -3 -1 3 -2 1 -2 -2 -1 2 -3 -1 2 -3 -2 1 -2 -3 -1 -1 -1 -3 -1 -3 -2 -3 2 -3 -2 3 2 1 -3 -3 1 2 1 2 -3 1 -2 1 2 -3 1 3 1 -2 -1 -2 -2

-2 -3 -2 1 -2 3 1 1 3 2 -1 -3 -3 -2 -1 -1 2 -3 -1 3 -1 3 -1 -1 2 1 -2 1 3 1 -3 -2 1 1 -2 1 2 3 2 -3 1 2 -1 2 -3 -3 -3 2 -3 -1 -3 -2 -1

2 3 3 3 3 3 -1 -1 2 -1 -2 -3 -1 -2 1 1 2 1 1 1 1 2 3 3 1 -2 -2 1 2 1 3 2 -3 -1 -1 -2 1 1 3 2 -3 -2 3 1 -3 1 -2 -2 -2 3 3 -2 1 -2 1

-2 -2 -2 -3 -2 -2 -1 2 1 3 -2 -3 -1 -2 3 -1 -2 -1 2 -3 -1 3 -2 -3 2 1 -2 3 -1 -3 -1 2 3 -1 -2 1 2 -1 2 -3 -2 -3 1 3 -2 1 -3 2 3 3 -1

-1 -3 2 -1 -1 2 1 3 3 1 1 -2 -3 -3 -1 2 3 2 3 -1 -1 -2 3 -1 3 2 -1 -1 2 1 -2 3 2 -3 2 - 1 -3 -3 -2 1 3 -2 -2 3 -2 3 -2 1 2 2 -3 2 3 2

3 -1 3 2 -3 1 -3 1 3 -2 -2 -3 -1 - 3 1 3 1 -3 -2 1 -2 -3 2 3 3 -2 -1 2 1 -2 -2 -3 -2 -1 -2 3 -2 1 1 -2 -1 2 -1 2 1 -3 -2 3 1 -3 -2 -1

-1 -2 1 2 -1 -1 3 2 -3 -3 -3 -2 3 1 3 -2 -2 -1 -2 3 -1 -2 -2 3 3 -1 -3 -1 -3 2 -1 3 3 -2 3 -1 3 -1 -2 1 -3 -2 1 1 -2 -1 -3 1 3 -1 -2

-1 -1 -1 2 3 -1 3 -2 2 3 3 -1 -2 -2 -1 3 1 -3 2 -1 -1 -1 -1 3 3 -2 -3 -3 1 3 2 -1 -3 2 - 1 -3 -2 -3 -2 -1 -1 -2 3 -2 -3 -2 -2 -1 2 -3

-1 -1 2 -3 2 3 3 2 -3 2 3 -2 -3 -3 -3 -2 -3 -1 -2 -2 3 -2 1 -3 1 -3 -2 -2 3 2 -3 1 -2 -1 2 -3 2 -1 -3 -1 -3 2 -1 2 2 2 -1 2 1 3 1 3 1

1 1 2 -3 -1 -2 1 1 3 -1 -2 -2 -2 3 -2 -2 3 2 1 1 3 -1 -1 3 3 -1 -1 -2 3 2 2 -3 1 -2 -2 -1 -1 2 -3 -1 -3 -2 1 -3 2 2 1 2 -1 -3 1 2 -3

1 -3 -1 -1 -1 3 3 3 -1 -1 -1 2 2 1 2 2 2 3 -2 -3 -1 3 1 -3 -3 -2 -3 1 -2 -1 -1 2 3 -1 -3 -3 -3 -1 -2 -3 -2 3 3 -1 -1 -3 1 3 2 1 3 1 -3

2 3 -2 3 1 2 2 2 3 3 -1 -3 -1 -1 -3 -2 1 -2 3 -2 3 3 2 -1 3 2 1 -2 -2 1 1 1 2 3 3 2 1 3 1 1 -2 -3 -2 -1 2 -1 -1 3 2 -3 -1 -2 -3 -2 -1

-3 -3 -3 1 3 2 -3 -2 1 -2 -3 2 1 3 1 -2 1 1 2 1 3 1 -2 -2 1 2 -3 1 1 -2 -2 3 3 -2 1 2 3 -2 1 1 3 1 2 -1 -1 -1 -1 2 3 -1 -3 2 2 -3 2

2 2 3 - 1 -3 -1 -2 1 1 -2 1 3 3 -2 3 1 3 -1 -2 1 2 -3 1 1 1 1 3 -2 -2 1 -2 -1 2 -3 1 -3 2 -1 2 2 -1 -2 3 3 -2 3 -1 -1 2 1 3 -1 2 1 -3

-1 -1 3 1 3 -1 2 2 -3 -1 -2 -1 3 3 -2 1 3 -1 -2 -3 1 2 2 -3 -3 -2 -1 -3 1 3 2 2 -3 -2 -3 1 2 2 -3 -3 1 -2 1 -3 -3 2 -3 -3 1 1 2 1 -2

3 1 3 -1 3 -2 3 -2 3 3 3 -1 2 -1 -1 -3 1 2 1 3 -1 -3 -2 -3 1 3 1 -2 -3 -3 -2 1 2 -1 -3 -1 -2 -1 -2 1 -2 -3 -3 -1 3 3 -1 2 -3 1 -3 -3

-3 1 -3 2 2 1 -3 -2 -3 -1 -3 -3 1 3 -1 -1 -3 -2 -2 -3 -1 -1 3 1 2 2 -1 -2 -3 -1 2 3 -2 - 3 -1 3 -1 -3 2 1 -2 -2 1 -3 -2 1 1 3 2 -3 2 3

-1 3 -1 -2 -2 3 1 -3 -2 -2 -2 1 3 1 3 -1 2 2 3 3 1 2 1 -3 -1 3 -2 1 -3 -3 1 1 3 -1 3 1 -2 1 2 -1 2 3 3 1 2 2 3 -1 -3 2 3 2 2 1 3 2 2

-3 -3 2 1 1 3 3 3 1 1 -2 -3 2 3 2 -3 -1 -1 2 1 1 -3 2 3 -1 3 1 -2 3 1 -2 1 3 -2 -3 -3 -1 -1 3 -1 -3 -1 3 3 3 1 3 -2 3 -2 -1 -1 -1 3 3

-1 -1 2 1 -2 -3 1 -2 -2 -1 -2 -3 2 1 -2 -3 -2 3 -1 -1 -3 -1 -3 -2 1 3 2 3 -2 -2 -3 -3 - 1 2 2 2 3 3 2 1 1 -2 3 3 1 -3 -2 -3 -2 -1 2 1

3 1 -2 1 3 -1 -3 -2 3 -1 -1 2 2 -3 -3 1 3 1 3 3 1 -3 -3 -1 2 2 -1 -2 -3 1 2 2 -1 2 2 3 -1 -3 -1 2 -3 2 -1 -2 -2 -3 2 -3 -1 -1 -2 -1 -2

-3 2 1 1 2 3 -1 3 1 2 3 -1 2 -1 -3 -2 1 -2 -3 -1 -2 -3 1 2 -3 1 -2 3 3 -2 -1 -3 -2 1 3 -1 -1 -1 3 -1 3 2 -1 -2 -3 1 1 -3 -1 2 -1 -2 1

-2 -3 -3 -1 -2 -2 3 -2 3 2 2 2 2 -1 -2 -3 1 1 3 -1 2 1 -2 3 2 -1 2 2 3 2 -1 -2 -3 1 2 2 -3 -1 -3 1 -3 -3 -1 2 2 3 2 1 3 2 2 1 3 -2 -1

2 2 3 -1 2 -3 2 3 2 -3 -2 -1 2 -1 -2 -2 -3 -2 3 1 1 2 3 2 -1 -2 -3 1 1 3 1 3 2 3 3 -2 -2 -2 -2 3 -1 3 1 1 -2 -2 -1 -1 2 -1 3 1 -2 -1

2 2 2 2 2 -3 1 1 2 3 -1 -1 2 -1 3 1 2 -3 -2 -3 -2 1 -2 -3 1 3 1 -3 -1 3 1 2 -1 -1 2 -3 -1 3 2 -3 -2 -3 2 1 -3 2 1 1 1 3 3 -2 -1 2 3

3 -2 3 2 1 2 1 3 1 -3 -3 1 1 2 -1 -2 -1 -1 -1 -1 -3 -1 -3 -2 -1 -3 -1 -3 -1 -1 2 -1 2 3 1 -2 -2 3 3 1 2 -1 -3 -2 -1 -1 2 -1 3 -1 -3 -3

-3 -1 3 2 -3 -1 3 3 -2 -2 -3 -1 -2 1 -3 1 -2 -1 -2 -3 -1 3 -1 -2 1 3 1 1 1 -3 2 -1 -1 3 3 1 -3 -1 -3 2 2 -3 -3 -3 1 1 3 3 -2 -1 -3 -2

-3 -1 2 3 -1 -3 2 1 -2 -2 3 2 2 1 -3 -2 1 1 -2 3 1 -2 -3 -2 1 -3 1 -2 -3 1 3 2 1 -2 3 -2 1 -3 2 -1 -3 1 2 1 2 -3 -2 1 2 2 -1 -3 -3 2

-3 1 -3 1 -2 -1 -3 -1 -3 2 2 -1 2 3 -2 1 2 3 1 2 -3 1 -3 1 -3 -2 1 -3 -3 -2 1 2 -3 - 2 -1 3 -1 -3 2 -3 -1 -3 -2 1 2 -3 2 3 2 2 -3 -1 3

3 3 2 -3 1 3 2 1 -2 -2 3 1 3 1 2 2 2 1 2 2 -1 -2 1 -2 -2 -1 2 -1 3 -1 3 -1 -2 3 -1 2 -3 -1 2 2 3 -2 1 2 2 -1 2 2 2 -3 -3 -1 3 2 -1 3

-2 -2 -2 -1 -1 3 -1 -2 -1 -2 -2 1 -3 -3 2 3 3 -2 -1 -3 -3 2 -3 -3 1 2 -1 3 1 2 -3 -3 -3 2 -1 2 -1 -2 1 1 -3 -3 2 -1 2 1 -2 1 -2 -1 -2
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1 3 -2 -2 -3 -1 2 3 -2 -3 2 3 -1 -2 -2 -2 3 2 2 -1 -3 2 3 -2 -3 1 -2 -1 -2 -2 -3 1 3 3 3 1 3 -2 -1 2 2 1 3 2 -1 2 -3 -2 -1 3 3 1 1 -2

-3 -1 -2 3 2 -3 -1 2 3 1 3 3 -1 -3 1 1 2 -1 2 2 2 1 3 -2 3 -1 -3 -3 1 3 -1 2 -3 -2 3 1 -3 -3 -2 -2 -3 -1 3 1 3 -1 -2 -1 2 1 1 1 -2 3

-1 -1 2 2 3 -1 -1 -3 1 -3 -2 1 1 -2 -1 3 3 1 1 3 -1 -2 1 2 -3 1 -3 -2 -1 -3 -1 -3 -2 -2 3 1 3 2 3 -2 -2 3 -1 -1 -2 1 1 3 -2 -3 -3 -1 2

3 -2 1 2 -1 -2 -1 -3 1 -2 1 -3 -3 -1 2 -1 2 1 3 2 3 -1 2 2 -1 -3 2 -3 1 3 2 -1 -2 -1 3 3 -1 2 1 -3 1 -2 3 3 3 2 -1 -2 -1 2 3 -1 3 1 3

-1 -2 3 2 -1 2 1 3 -1 -1 3 2 2 -1 2 -1 3 2 2 2 3 1 2 2 3 3 1 3 1 3 -1 2 2 -3 2 3 1 1 -2 3 2 -1 2 2 -3 1 1 3 1 3 -2 1 3 2 1 -3 -3 -2

1 3 1 3 1 2 3 -1 2 -1 2 -3 -3 -3 1 3 1 1 -3 -3 1 -3 -2 -1 -3 2 -3 -3 -2 1 -2 -3 1 2 -1 -3 1 1 2 1 -3 -1 -2 -3 2 1 2 3 2 -3 -1 -2 3 3

-2 3 -2 -1 -1 -2 1 3 -2 1 3 -2 1 3 3 2 3 -1 3 -2 -2 -3 -2 1 3 2 3 2 -1 -1 2 3 2 3 3 3 1 -2 1 -2 1 -2 -1 -2 -2 -2 1 2 2 1 2 2 -1 3 -1

-1 2 2 1 -3 -1 2 2 -3 -2 3 3 -2 -3 1 2 1 -2 -2 3 1 -3 -1 -3 -2 -1 -3 1 -3 1 2 1 1 -3 -3 1 3 1 3 2 2 1 2 -1 2 -1 2 -3 -3 1 1 1 1 3 1

2 -1 2 -1 3 -1 -3 2 -1 -2 3 -2 -2 1 3 2 -1 -2 -2 -1 -1 -2 -3 -1 2 -1 -2 1 1 -3 -2 -3 1 3 -2 3 2 -1 3 -1 -2 -3 -2 -1 -3 -2 -1 -2 3 3 -1

2 3 -2 -3 2 2 -3 -1 3 -2 1 -3 2 2 1 2 -3 -3 -2 1 1 -3 -2 -1 2 -1 -3 -1 3 1 -2 -2 3 -2 -3 -3 2 1 -2 -3 1 1 -3 1 1 3 -2 2 -2 1 3 2 -1

-2 -3 1 3 2 -1 -1 -1 -2 3 1 -2 -1 2 1 1 1 2 3 2 -1 -3 -3 2 -3 1 -3 -3 -1 -1 2 3 2 2 3 -2 -3 2 2 1 2 -3 2 -1 3 1 -2 -2 -1 -3 2 3 2 -1

-2 -1 -1 -2 -3 2 1 2 -3 2 -1 2 3 -2 3 -1 -2 -3 1 3 -1 -2 -1 -2 3 3 -2 -3 -2 1 2 2 2 2 -3 -2 3 -2 -2 -3 -3 -3 -2 -3 -3 1 -3 -1 -2 -1 3

1 2 -1 2 2 -1 -1 -1 -3 1 -2 3 2 2 -3 -2 -2 -3 -1 2 -1 -1 -3 -2 -2 3 2 -3 2 3 -2 3 - 1 3 -2 3 3 1 -2 -3 -3 1 1 3 -2 1 -3 -2 -2 -1 -2 1

-2 1 1 3 -2 -2 -1 3 -1 -3 -1 - 3 1 -2 -1 -3 1 3 2 1 2 -1 -2 -3 2 2 2 3 1 3 3 1 -3 -2 3 2 -1 -3 -2 -1 2 1 2 1 2 -1 -1 3 1 3 -2 3 -1 -2

-1 -1 -2 3 1 -3 -2 3 1 2 3 1 1 3 3 -1 -3 -2 -1 3 3 3 1 3 3 3 -1 3 -1 2 -3 -3 1 1 -2 -2 -1 -2 -2 3 -2 -2 3 1 -2 -3 -2 3 3 -1 -1 -3 1

-2 3 2 2 3 2 3 -2 -1 -3 2 2 3 2 1 3 -2 -1 -1 3 2 3 -1 -2 1 2 1 -3 -3 2 2 -3 -1 2 3 1 1 -3 1 -2 -1 -2 -1 2 3 2 2 1 -2 -1 -2 3 -2 -2 -3

-2 -2 1 -2 -3 -1 3 -2 -2 -3 -2 -3 -2 1 1 -3 -2 1 1 3 -2 3 3 -1 -2 3 1 2 2 1 -2 -2 1 -3 -2 -1 -3 -1 -2 -2 -1 3 1 1 -3 1 -3 -1 -2 3 1 -3

1 2 -3 -1 -1 -1 -2 -1 2 -3 -2 -2 -1 -3 -3 -2 3 2 3 3 3 - 1 -2 -2 -1 -3 1 -3 -1 -2 -3 1 -3 -3 2 -3 -3 2 -1 -1 -2 -3 2 3 -2 -3 1 1 -3 -1

-2 -2 -3 -3 2 1 3 2 2 2 1 3 -1 3 2 1 1 1 2 3 1 2 -1 -3 1 3 -1 -2 -2 -3 -2 -2 1 2 - 1 -3 -3 -1 3 -1 -3 1 -3 -1 3 1 3 -1 3 1 3 2 1 -2 1

-2 -3 -2 -3 1 -2 -2 3 1 1 -3 -3 1 -3 -1 -2 -2 1 -2 -2 -2 -3 -2 -3 -3 -1 -3 2 2 3 -1 -2 3 -2 -1 -2 -1 -3 -2 -1 -2 -3 -1 -3 -2 -3 -2 3 -2

-1 -2 -1 3 -2 1 1 -2 3 -2 -2 -3 2 3 -2 1 3 1 2 3 1 -3 2 3 -2 1 2 -3 -1 3 -2 -3 -2 -3 1 2 3 -2 -3 -1 -2 -2 1 3 -2 3 1 2 -1 -1 -2 1 3 -

1 -2 -3 -2 1 -2 -1 3 -2 -1 3 -1 -1 3 2 -1 -1 -1 -2 -3 -2 -2 1 2 3 1 -2 -3 -2 -2 -3 -1 -3 1 -2 3 2 2 -3 1 -3 -3 -3 -1 3 1 3 3 -1 -1 -2

1 2 1 -3 -3 -3 -1 -1 -2 -1 -1 2 1 2 2 2 2 3 -1 -3 1 3 -2 -2 -1 -3 -3 1 3 -2 3 1 -2 1 3 -1 -2 -2 -2 1 3 -1 -1 -3 2 1 2 -3 -2 -3 -2 1 3

-2 -3 1 3 2 1 -2 1 3 3 -1 -1 2 2 -3 2 3 1 2 1 2 1 -3 2 1 -3 1 -2 1 -3 -1 -1 3 -1 -1 2 1 -3 -3 2 1 3 -2 -2 1 3 1 1 2 2 -3 1 2 1 -3 -2

1 3 1 2 3 3 2 -3 1 1 -2 3 -1 -1 2 2 1 3 -1 -3 1 2 -3 -1 -1 -3 -1 -3 -2 3 3 1 3 -2 -1 -2 3 3 -1 2 2 2 3 2 -1 -2 -1 -3 2 3 3 -2 -1 3 2

-3 2 1 2 2 -1 3 -2 -1 -3 2 -1 -2 -1 -3 2 1 1 2 1 3 -2 -1 2 3 -1 2 1 -2 -1 3 3 1 -3 -3 -2 -2 3 2 3 2 3 2 1 -2 -1 -1 2 2 -3 1 -3 2 2 -1

3 -2 1 1 3 -1 3 3 3 1 3 -1 -1 -2 1 3 2 2 -1 -3 2 1 - 3 -3 -2 1 1 2 1 -3 2 2 -3 -2 3 -1 -3 -2 3 3 -1 3 3 -2 -2 3 3 -1 -3 2 2 -1 -3 -1

-1 -1 -3 -1 -3 -2 -1 -2 -1 -1 -2 3 1 -2 -1 -2 1 3 3 -1 3 2 -3 -3 -2 -2 3 1 1 2 2 1 -2 1 -2 -2 -2 -1 3 -1 -3 -3 -1 3 1 -3 1 3 1 3 -2 1

3 -2 -2 -3 2 1 -2 3 3 -1 - 1 -3 2 2 2 3 2 1 -2 -1 -1 3 3 1 2 3 -2 -2 -1 -3 1 3 1 -3 -3 -1 -1 -2 -1 2 3 3 -2 -2 3 1 1 3 -2 1 2 2 -1 -2

1 3 2 1 -3 -3 2 3 -1 3 2 -1 2 3 -2 -2 -2 -1 -2 -1 2 1 -2 3 -2 1 -3 -3 -3 2 -3 -3 -3 -1 -2 -1 -2 -1 2 -1 2 2 -1 -1 2 -3 -2 -3 -1 -3 2

-3 1 1 -3 -2 3 1 -3 -2 1 2 3 1 -2 -2 3 -1 2 3 1 2 -1 3 3 3 -2 -2 -1 -3 -1 3 2 1 -3 2 -3 2 -3 1 2 3 3 2 -3 2 1 -3 -2 -3 1 1 -3 -2 -2 1

1 2 -3 -1 -1 -2 -1 2 -1 -3 1 3 3 3 2 2 1 3 -1 -1 -2 -1 -2 -2 -3 -1 3 1 -2 1 -3 1 -3 1 3 3 1 3 2 3 -2 -3 2 -1 2 -1 3 -2 -2 -3 2 1 -3 2

-3 -1 -2 3 1 -3 -3 -1 2 1 -2 1 -2 1 2 2 -3 2 1 1 -2 3 -2 -1 3 2 3 -1 2 -3 -3 -2 -1 -3 -2 1 1 -3 2 1 2 1 -3 -3 2 1 -2 -1 -3 -2 1 1 2 1

2 2 -3 2 -1 -2 -3 -2 1 3 3 3 3 -1 -2 3 -2 -2 -1 3 3 1 -2 1 2 2 -1 -3 2 2 2 -1 2 -1 -2 3 1 1 3 -2 -3 -3 -3 -2 -1 -1 -1 -2 3 3 2 3 1 2

-1 2 3 2 2 3 3 2 1 1 3 1 2 -3 1 2 3 -2 1 -2 3 -2 3 3 3 3 3 -1 2 1 3 1 1 3 -2 -2 -1 -2 -2 1 1 -2 -3 1 2 2 -1 -3 -3 -1 -3 2 1 -2 1 -3

-2 1 -3 2 -1 -1 -1 2 1 -2 -2 1 -3 -1 -2 -2 -1 2 2 -1 3 -2 1 -3 1 2 2 -3 -2 3 -2 -2 1 1 2 1 1 -2 -1 2 -3 -1 -3 -2 3 -1 -1 -3 2 3 1 1 2

1 -3 -2 -1 -3 -3 -2 -1 -1 2 2 3 -1 3 3 -2 -3 1 1 -2 -3 -3 -3 -1 -1 2 -1 -2 -2 - 2 1 -3 -1 2 1 2 3 1 3 -1 2 -1 -3 1 1 1 3 1 3 1 -2 1 -2

-1 -2 -2 -1 -1 -1 -3 -1 2 -1 2 -1 2 1 -2 -3 -1 -1 -1 -1 3 -2 3 -1 -1 -2 -2 -1 3 -1 -2 -3 -2 -3 2 2 3 2 1 -2 1 3 -1 -2 -3 -2 -3 -3 -3 -2

-2 -2 -1 3 -2 -1 -3 -3 -1 -3 -1 -2 3 -2 -2 -3 -1 3 2 1 2 2 1 -3 -1 -3 -1 -3 -1 3 3 3 -2 -2 1 -2 -3 2 2 -1 3 -2 1 2 -3 -2 -1 -1 -3 -2 1

-3 2 1 3 -2 3 1 2 -1 3 -2 -2 1 2 3 2 -1 -2 -3 1 2 2 -1 3 3 -1 3 2 2 1 1 -3 1 3 3 3 -2 -2 -3 -2 3 -2 -1 2 2 2 2 3 3 -1 2 3 3 3 2 3 -1

-2 3 2 -1 3 -2 3 3 -2 -2 -1 -3 2 3 3 -2 -2 -1 -1 2 1 -2 -3 1 3 3 2 -1 -3 -1 -3 1 2 -1 -3 -2 3 -2 1 -3 1 -3 -2 1 -3 2 2 2 1 -3 -1 -1 2
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-1 -3 -1 2 1 1 2 -1 3 -2 -3 1 2 2 1 -3 -1 -2 -3 -3 -1 3 1 2 3 1 -2 -1 -2 1 -3 1 -3 -3 -3 -2 1 -3 -3 -2 -1 3 1 3 1 -2 3 1 -2 -2 -2 1 1

3 -1 -3 2 -3 -2 1 -3 -2 1 1 -2 3 3 3 1 2 1 -2 1 -3 -2 -1 2 -3 -3 1 2 2 1 -3 -3 2 -3 -3 1 1 2 2 1 2 -3 2 -1 -1 -1 -2 3 -1 -2 -2 -2 3

-1 2 1 2 3 -2 3 3 2 - 1 2 3 2 3 -1 2 2 2 3 1 3 1 -2 3 1 1 3 3 -1 3 -1 -2 1 3 2 3 3 2 1 -2 -1 3 -1 -2 1 -2 1 -2 -2 3.

E.3 Collisions for Morgenstern hashes, q = 2

and deg p(x) = 20

Now we give a small example for our collision-finding algorithm. The poly-
nomial we choose to target is p(x) = x20 +x17 +x14 +x13 +x12 +x11 +x9 +x7 +
x5 +x3 +x2 +x+1. We choose R = 10 and generate random m and b′′. After
3 random trials we get m = x9+x8+x7+x6+x5+x4, b′′ = x10+x8+x5+x2+1
so k = 52, a = x52+x48+x36+x32+x30+x25+x24+x22+x20+x15+x14+x12+
x11 +x10 +x9 +x4 +x3 +x+1, b = x51 +x50 +x48 +x47 +x46 +x45 +x44 +x40 +
x39 +x38 +x37 +x36 +x35 +x34 +x32 +x31 +x30 +x29 +x28 +x27 +x25 +x24 +
x23+x22+x20+x19+x18+x16+x11+x10+x9+x8+x5+x4+x3+x2+x and n =
x62+x61+x59+x57+x55+x53+x52+x51+x50+x49+x48+x46+x45+x40+x37+
x31+x29+x28+x26+x25+x24+x23+x16+x15+x13+x12+x10+x6+x5+x3+1.

The polynomial n has three factors n1 = x56 +x54 +x53 +x50 +x48 +x46 +
x44+x40+x36+x34+x33+x30+x29+x22+x20+x18+x13+x11+x7+x6+x5+x3+1,
n2 = x4 + x3 + x2 + x+ 1 and n3 = x2 + x+ 1 which are all of even degrees.
For each factor ni we compute α such that α2 + α + 1 ≡ 0 mod ni and use
this value and the continued fraction algorithm to recover (ci, di) such that
c2
i +d2

i + cidi ≡ 0 mod ni: we get (c1, d1) = (x26 +x25 +x24 +x21 +x20 +x18 +
x16 +x14 +x13 +x11 +x8 +x6 +x5 +x+ 1, x28 +x23 +x21 +x19 +x15 +x13 +
x10 + x7 + x5 + x4 + x2 + x+ 1), (c2, d2) = (x, x2 + 1) and (c3, d3) = (x, 1).

Combining these partial results we get c = x51 + x50 + x47 + x41 + x40 +
x36 + x31 + x27 + x26 + x25 + x24 + x23 + x22 + x20 + x18 + x17 + x16 + x14 +
x12 + x11 + x10 + x9 + x7 + x4 and d = x51 + x50 + x49 + x48 + x47 + x45 +
x44 + x43 + x42 + x39 + x36 + x33 + x31 + x30 + x29 + x27 + x26 + x25 + x22 +
x21 + x20 + x18 + x17 + x16 + x14 + x13 + x9 + x7 + 1.

We can verify that

(a2 + b2 + ab) + (c2 + d2 + cd)x = (1 + x)2k

and (a, b, c, d) ≡ (1+x)k(1, 0, 0, 0) mod p. We factorize the lifted matrix and,
using the indices of the generators given in Section C.2, we get the following
collision with the void message: 0 2 0 2 0 1 2 1 2 1 2 1 2 0 2 0 2 0 2 0 2 0 1
0 2 0 2 1 0 2 1 0 1 0 2 1 0 1 2 1 2 1 2 1 0 2 1 0 1 2 0 1 0 1 0 1 0 2 1 0 1 2 0 2
1 2 0 2 0 1 2 0 2 0 1 0 2 1 2 1 0 2 0 1 0 1 2 0 2 0 2 0 2 0 1 2 1 0 2 0 2 1 0 1.
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E.4 Collisions for Morgenstern hashes, q = 2

and deg p(x) = 1024

Let p(x) = x1024 +x1023 +x1022 +x1020 +x1014 +x1013 +x1009 +x1006 +x1003 +
x999+x993+x992+x990+x989+x988+x987+x986+x983+x982+x981+x980+x979+
x977+x976+x971+x967+x965+x961+x960+x957+x955+x953+x946+x945+x943+
x941+x937+x936+x935+x934+x930+x925+x923+x920+x919+x918+x917+x915+
x914+x911+x910+x909+x908+x906+x904+x901+x900+x899+x898+x896+x895+
x894+x889+x888+x885+x884+x882+x878+x876+x875+x872+x870+x866+x864+
x863+x859+x857+x856+x855+x854+x851+x850+x849+x846+x838+x837+x834+
x831+x830+x829+x828+x827+x821+x818+x813+x812+x810+x809+x808+x807+
x806+x805+x804+x803+x802+x800+x799+x798+x796+x795+x793+x791+x788+
x785+x784+x783+x781+x776+x775+x773+x771+x770+x769+x768+x766+x760+
x753+x751+x749+x747+x745+x743+x742+x735+x734+x733+x732+x730+x729+
x726+x724+x722+x719+x718+x716+x715+x712+x711+x707+x706+x705+x700+
x696+x695+x693+x692+x690+x685+x681+x676+x675+x674+x673+x671+x670+
x669+x664+x662+x661+x658+x656+x654+x652+x651+x650+x649+x648+x646+
x645+x643+x641+x640+x639+x637+x635+x634+x633+x632+x631+x629+x628+
x626+x624+x623+x621+x619+x615+x612+x611+x605+x604+x603+x600+x598+
x596+x594+x590+x588+x586+x585+x582+x579+x577+x571+x570+x564+x562+
x561+x559+x558+x557+x556+x550+x549+x545+x544+x541+x540+x538+x537+
x535+x534+x528+x526+x525+x524+x520+x519+x518+x516+x515+x513+x512+
x510+x509+x507+x503+x498+x496+x495+x492+x491+x490+x489+x484+x483+
x481+x480+x478+x477+x476+x475+x474+x473+x468+x467+x465+x464+x463+
x459+x457+x456+x455+x454+x449+x447+x444+x443+x442+x438+x435+x434+
x431+x429+x427+x425+x424+x415+x412+x411+x409+x406+x404+x403+x402+
x399+x398+x394+x393+x392+x390+x389+x387+x386+x385+x384+x382+x381+
x380+x379+x377+x374+x373+x369+x368+x365+x362+x357+x354+x351+x349+
x346+x345+x344+x343+x340+x337+x331+x330+x328+x326+x324+x323+x322+
x321+x319+x317+x315+x314+x313+x312+x310+x309+x305+x304+x303+x298+
x296+x294+x290+x289+x288+x283+x282+x281+x279+x276+x275+x273+x271+
x268+x266+x265+x264+x263+x260+x259+x253+x252+x250+x249+x247+x246+
x245+x244+x242+x237+x235+x234+x231+x228+x227+x225+x222+x218+x217+
x216+x215+x214+x211+x210+x208+x206+x204+x203+x202+x201+x200+x199+
x198+x195+x194+x192+x191+x189+x187+x185+x184+x181+x180+x179+x172+
x171+x170+x165+x164+x162+x161+x159+x157+x153+x152+x151+x149+x148+
x146+x145+x143+x140+x137+x134+x133+x128+x127+x125+x123+x121+x120+
x119 +x115 +x113 +x110 +x108 +x107 +x105 +x103 +x102 +x100 +x99 +x96 +x94 +
x89+x87+x86+x83+x82+x81+x79+x77+x76+x73+x70+x69+x68+x64+x62+
x61+x59+x57+x56+x55+x54+x53+x51+x50+x49+x48+x47+x45+x44+x41+
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x40 +x39 +x37 +x34 +x31 +x27 +x22 +x18 +x14 +x10 +x9 +x8 +x5 +x2 +x+1.
Then the following sequence collides with the void sequence:
0 2 0 1 0 2 0 2 0 1 2 1 0 1 0 2 1 0 2 0 1 2 0 1 0 2 1 0 2 0 1 0 2 1 0 1 2 0 2 0 2 0 2 1 0 2 0 1 2 1 2 0 1 2 0 2 0 1 2 1 0 2

1 0 1 2 1 2 0 2 0 2 1 2 1 2 0 1 2 0 2 0 1 2 0 1 2 1 2 1 2 1 0 2 1 0 1 2 0 1 0 1 0 2 0 2 1 2 0 2 0 1 2 0 1 0 2 1 2 0 2 1 0 2 0 2 0

1 2 0 1 0 2 1 0 2 0 1 2 0 2 1 2 1 2 1 2 0 2 0 1 2 1 2 0 2 1 0 2 1 0 1 0 1 2 0 1 0 1 0 2 0 2 0 2 0 1 0 2 0 2 1 0 2 1 2 0 1 0 2 0 1

2 0 1 2 0 2 1 2 1 0 2 1 2 0 1 2 1 0 2 1 0 1 0 2 0 1 2 0 2 0 1 2 0 2 0 1 2 0 2 0 1 2 1 2 1 2 1 0 2 0 2 0 2 1 2 1 0 2 0 1 0 2 0 1 0

2 1 2 1 0 2 0 1 2 0 1 0 2 1 0 2 0 2 1 2 0 1 2 1 2 1 0 1 0 2 1 0 1 2 0 2 0 1 2 0 1 2 1 0 2 0 2 0 2 1 0 2 0 1 2 0 1 0 1 2 0 2 0 1 0

1 2 1 0 1 0 2 1 0 1 2 0 1 2 0 2 0 2 0 1 2 0 2 1 0 1 0 1 0 1 2 0 2 0 2 1 2 1 0 2 0 2 0 1 2 1 0 1 0 1 2 1 2 1 0 1 0 1 2 1 0 1 0 2 1

0 2 0 1 0 1 0 2 0 2 0 1 2 0 2 1 2 1 0 2 1 2 0 1 2 1 0 2 0 2 0 2 1 0 1 2 1 0 1 0 2 0 2 1 0 2 1 2 0 1 0 2 0 2 0 2 1 2 1 2 1 0 2 1 2

1 0 2 1 2 0 2 0 1 0 2 1 2 0 1 2 1 2 0 2 0 1 0 2 0 2 1 2 0 2 1 0 2 0 2 1 0 1 2 0 2 0 1 0 1 2 1 0 2 1 2 0 2 0 2 1 2 0 2 1 0 2 0 1 2

1 2 1 2 1 0 2 1 2 0 1 0 2 0 2 0 1 0 1 0 2 1 0 1 0 1 0 2 0 2 0 2 1 2 1 0 2 0 1 2 0 2 0 1 2 1 2 0 1 0 2 0 1 0 2 0 1 2 1 0 2 0 1 0 1

2 0 2 1 0 1 0 1 0 1 2 1 0 2 1 2 1 0 1 0 2 0 1 2 1 0 1 0 1 0 2 0 2 1 2 1 0 1 0 1 0 1 0 2 1 0 2 0 1 0 2 0 1 0 2 0 1 2 1 2 1 0 1 2 0

2 1 2 1 2 1 0 1 0 1 0 1 0 1 2 1 0 2 0 1 2 1 2 0 1 0 2 0 2 0 1 0 2 0 2 1 2 1 0 2 1 2 0 1 2 1 2 0 2 1 2 0 1 2 1 0 1 0 1 2 1 2 0 1 2

1 2 0 1 0 2 0 1 0 2 1 2 0 2 0 2 1 2 1 0 1 2 0 2 0 1 0 1 0 2 0 1 2 0 1 2 0 1 0 1 2 1 2 0 2 1 2 0 2 0 1 0 2 1 2 1 0 2 1 0 1 2 0 1 0

1 2 0 2 0 2 0 1 0 1 2 0 2 1 0 1 0 1 2 0 1 2 1 0 2 0 2 0 2 0 1 2 0 1 0 1 0 1 0 1 0 2 0 1 0 2 1 0 1 2 0 1 2 1 0 1 0 1 0 2 0 1 2 0 2

0 1 2 1 0 1 2 0 1 2 0 1 0 2 1 2 0 1 0 1 0 1 2 0 1 0 1 2 1 0 2 1 2 0 2 0 2 1 2 0 2 1 0 1 0 1 2 1 2 0 2 1 2 0 2 0 2 0 1 0 2 0 2 0 1

2 1 0 2 1 2 0 1 0 1 2 1 0 1 2 1 0 1 0 2 1 2 0 1 0 1 0 2 1 0 1 0 2 1 0 1 0 2 1 2 0 1 0 1 2 1 0 2 0 2 0 1 2 1 0 2 1 2 0 1 2 0 1 2 1

2 1 0 1 0 2 1 2 0 1 0 2 1 2 0 1 0 1 2 1 0 2 1 2 0 2 0 2 1 2 0 2 1 0 2 1 2 1 0 1 2 1 2 1 2 1 0 2 1 2 0 2 0 2 0 2 0 1 0 2 0 1 2 0 1

2 0 1 0 1 0 1 2 1 0 1 0 2 0 2 1 0 2 1 0 1 2 1 0 1 2 0 2 1 2 0 2 0 1 2 0 2 1 2 0 2 0 2 0 1 0 1 2 0 2 1 0 2 0 1 2 1 2 1 2 0 1 0 1 2

0 2 1 0 2 1 0 2 1 0 1 2 0 2 1 2 1 2 1 0 2 1 0 1 2 0 1 2 0 1 2 0 1 2 1 2 1 0 2 0 1 2 0 2 0 2 0 2 1 2 1 2 1 2 0 1 0 2 0 2 1 2 0 2 0

1 2 0 1 0 2 0 2 0 1 2 0 2 1 0 1 0 2 1 2 1 2 1 2 0 1 0 2 0 1 0 1 0 1 2 0 2 0 2 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 2 0 1 2 1 2 1 0

2 0 1 2 1 0 2 1 2 0 2 0 1 2 1 2 0 1 0 2 1 2 0 2 0 2 0 1 2 0 2 0 2 1 0 1 2 0 2 1 0 2 0 1 2 0 1 2 1 0 1 0 1 2 1 0 2 0 2 1 2 1 2 0 2

1 2 0 2 0 1 2 0 1 0 2 1 2 1 0 1 0 2 0 2 0 2 1 2 1 0 2 1 2 1 0 2 0 2 1 0 2 1 2 0 2 1 2 0 1 2 0 2 0 2 1 0 1 0 1 0 1 0 1 0 1 0 2 1 0

1 0 2 0 2 0 2 0 1 2 0 1 2 1 2 0 2 1 2 0 1 2 1 0 1 2 1 2 1 0 1 2 0 1 0 2 1 2 1 0 1 0 2 0 2 1 0 1 0 2 0 1 2 1 2 1 2 1 0 2 1 0 1 0 1

0 1 0 1 2 0 2 1 2 1 2 0 1 2 0 1 2 1 0 2 1 2 0 1 0 2 0 2 0 1 2 0 1 0 1 2 1 2 0 1 0 1 2 0 2 0 2 1 2 0 2 0 1 2 0 1 0 1 2 1 2 0 1 0 2

0 2 0 1 2 1 0 2 1 2 0 2 1 0 1 2 0 2 1 2 0 1 2 0 1 0 2 0 1 2 1 0 2 1 0 1 0 1 0 2 1 0 1 2 1 0 2 0 2 1 0 2 0 2 1 2 1 0 1 0 1 2 0 2 0

2 1 0 2 0 2 1 2 0 1 2 1 0 2 0 2 1 0 1 0 1 2 1 0 2 0 2 1 0 2 1 2 1 2 1 0 2 1 2 0 2 0 2 0 2 0 2 1 2 1 2 0 2 0 2 1 0 1 0 1 0 1 0 2 0

1 0 2 1 0 2 0 2 1 2 0 2 1 2 0 1 0 2 0 2 0 1 2 1 2 0 1 2 1 2 1 2 0 2 1 2 0 1 2 0 1 2 1 0 1 0 1 0 2 1 0 1 2 1 2 1 0 1 0 1 2 0 2 0 2

0 1 0 2 0 1 2 0 1 2 0 1 0 1 2 0 1 0 1 2 1 0 2 0 2 1 0 2 0 1 0 1 2 1 0 2 1 2 1 2 1 0 1 0 1 0 2 1 2 0 1 2 1 2 0 1 0 1 2 1 0 2 0 1 2

0 2 1 0 1 2 1 0 2 1 2 0 2 0 2 1 2 1 2 0 2 0 1 2 1 0 1 0 1 0 1 2 0 2 1 2 1 2 0 1 2 1 0 2 1 0 1 0 1 2 1 0 2 1 2 1 2 0 2 1 2 1 0 1 2

1 0 2 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0 1 2 0 2 0 1 2 1 0 1 2 0 1 0 1 0 2 1 2 1 2 0 2 1 0 2 0 2 1 2 1 0 1 2 1 2 0 1 0 2 1 2 1 2 1 0 1

2 1 0 1 2 1 0 1 0 2 1 0 2 1 2 0 2 0 1 0 2 0 1 0 1 0 2 1 2 0 1 2 0 2 0 2 0 2 1 0 2 0 1 2 1 0 2 0 2 0 2 1 0 2 1 0 2 1 0 2 1 2 1 2 0

2 1 0 2 0 1 0 1 0 2 0 1 2 1 0 2 0 1 2 0 2 1 0 2 1 0 1 2 1 2 0 1 0 2 0 2 0 1 0 2 1 2 0 2 0 1 0 1 0 2 0 2 0 1 2 1 0 1 0 1 2 1 2 1 0

2 1 2 0 1 0 2 0 2 1 0 2 1 2 1 0 2 0 2 0 1 2 1 2 0 2 1 2 0 2 1 2 1 2 0 1 0 2 0 2 1 2 0 1 0 1 2 0 1 2 0 1 0 1 2 1 0 1 2 1 2 1 2 0 1

0 2 0 2 0 1 0 1 2 0 2 1 2 1 0 1 2 1 0 1 0 1 0 2 1 0 2 0 2 0 2 1 2 1 0 2 1 0 1 0 2 0 1 2 0 2 0 2 0 1 0 1 2 0 2 0 2 0 1 0 2 0 1 0 2

0 2 1 2 1 2 0 1 2 1 0 2 0 2 0 2 1 2 1 0 2 1 0 1 2 1 0 2 1 2 1 2 0 2 1 2 0 1 2 1 0 1 0 1 2 0 1 0 2 0 1 0 2 0 1 0 1 0 2 0 1 0 2 1 2

0 1 0 2 0 2 0 1 2 1 2 1 2 0 1 0 2 1 2 1 0 1 2 0 2 0 1 0 1 0 1 2 1 2 1 0 2 1 2 1 2 1 2 0 2 0 1 2 0 1 2 1 0 2 1 0 2 1 0 1 2 1 2 1 0

2 0 2 1 2 1 0 1 0 1 2 1 0 2 1 2 1 2 0 2 1 2 0 1 0 2 0 1 0 1 0 1 2 1 0 2 0 1 2 0 1 0 1 0 1 0 1 0 1 2 1 2 0 2 1 2 1 2 1 2 0 2 1 2 0

1 2 0 2 1 0 1 0 1 0 1 2 0 1 2 0 2 1 0 1 2 1 2 0 1 0 2 1 0 1 2 0 2 1 0 2 0 1 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 0 2 0 1 2 1 0 2 0 2 0 2

1 2 0 1 0 2 0 1 0 2 0 1 0 1 2 1 2 0 2 1 2 1 0 2 0 1 0 1 0 1 0 1 2 0 2 1 0 1 2 1 2 1 2 0 2 1 0 1 0 2 0 2 1 2 0 1 2 0 1 2 0 1 2 1 0

2 1 0 1 2 0 1 0 2 0 1 2 0 2 0 2 1 0 1 0 1 0 1 0 2 1 2 1 0 2 1 0 2 0 2 1 0 1 2 0 2 1 2 0 1 0 2 0 2 1 2 1 0 2 1 2 1 0 1 0 1 2 1 2 0



284 APPENDIX E. EXAMPLES FOR OUR ALGORITHMS

2 0 1 0 1 0 2 0 2 1 0 2 0 1 0 1 2 1 2 0 2 1 2 1 2 0 1 0 1 0 2 0 2 0 2 0 1 0 2 0 1 2 1 2 0 1 2 0 1 2 1 0 2 0 2 0 1 0 1 0 2 0 1 0 1

0 1 2 1 0 2 1 2 0 2 0 2 0 2 1 2 0 2 1 2 1 2 1 0 2 1 2 0 1 2 1 0 2 1 2 0 1 0 2 1 2 1 0 1 0 2 1 2 1 0 1 2 1 2 0 2 1 0 1 2 0 2 1 2 0

1 0 2 1 2 0 2 1 0 2 0 2 0 2 0 1 2 1 0 1 2 0 1 2 1 2 1 0 1 2 0 1 0 1 2 0 2 0 2 1 0 1 2 1 2 1 2 0 2 1 0 1 2 0 1 0 1 0 2 1 0 1 0 1 2

1 2 1 0 1 2 1 0 1 0 2 1 2 0 2 0 1 2 1 2 0 2 0 1 2 0 1 2 0 2 0 2 0 2 1 2 1 0 1 2 1 2 0 1 0 2 1 0 1 0 1 2 1 0 2 0 1 2 0 2 0 2 0 2 0

2 1 0 2 0 1 2 0 2 1 0 2 1 0 1 0 2 1 2 0 2 0 1 0 1 2 1 0 1 0 1 2 1 0 1 2 1 2 0 2 0 1 0 1 2 1 0 1 0 1 2 0 2 1 2 0 2 0 2 1 2 0 2 1 0

2 1 0 2 0 1 2 0 2 1 2 0 2 0 1 2 1 0 2 1 2 1 0 2 1 0 2 0 1 2 0 1 0 1 0 1 0 1 2 0 1 0 2 0 2 1 2 1 0 1 2 0 2 0 2 1 0 1 0 2 1 2 0 1 2

1 0 1 0 2 1 0 2 1 2 0 2 1 2 1 2 0 2 1 0 2 0 1 2 1 0 1 0 1 0 2 1 2 1 2 1 0 1 2 0 2 0 2 0 2 1 0 1 0 2 1 0 2 0 1 2 1 2 0 2 1 0 2 0 1

2 1 0 1 0 1 2 0 2 1 2 0 2 0 2 1 0 2 1 0 1 2 1 2 1 2 0 2 0 2 1 0 1 2 0 2 1 0 2 0 2 1 2 0 1 2 0 2 0 2 0 2 1 2 0 1 2 1 0 1 0 2 0 2 1

2 0 1 2 1 2 0 1 0 2 1 0 1 2 0 1 0 1 0 1 0 2 0 2 0 1 2 1 0 1 2 0 1 0 1 2 0 2 0 1 2 1 0 1 2 0 1 2 1 2 1 2 0 2 0 2 0 2 1 0 2 0 1 2 0

2 0 2 1 0 1 0 2 0 1 2 1 2 1 0 2 0 2 0 2 1 0 2 1 2 0 2 0 2 1 2 1 2 1 0 2 0 2 1 2 0 1 2 0 2 0 1 2 1 2 0 2 0 2 0 1 2 0 2 1 2 1 0 1 0

2 0 1 0 1 0 2 1 0 1 2 1 2 1 0 1 0 1 0 1 0 1 2 0 1 2 0 2 1 0 1 2 0 2 1 2 1 0 2 0 1 2 1 0 2 1 0 2 0 1 0 1 0 2 0 2 0 1 0 1 0 1 0 1 2

1 2 0 1 2 0 1 0 1 2 0 2 0 2 0 1 2 1 2 0 1 2 1 0 1 0 1 0 2 1 0 2 1 0 2 0 2 0 2 1 0 1 0 1 2 1 2 0 2 0 1 0 1 0 1 2 0 1 0 1 0 2 1 2 0

2 1 2 0 2 0 2 1 0 1 0 1 0 1 2 0 1 2 0 2 0 1 2 0 2 0 1 2 1 2 0 2 0 2 1 0 1 0 1 2 1 0 2 1 2 0 2 0 2 1 2 0 1 2 0 2 0 2 0 2 1 0 2 1 2

1 0 2 0 1 2 0 2 0 1 0 2 1 0 1 0 1 2 0 1 0 2 0 1 2 0 1 2 0 1 2 1 2 1 0 1 0 2 1 0 1 2 0 2 0 1 0 1 0 1 0 1 0 2 1 0 2 1 0 1 0 2 0 2 0

1 2 0 2 0 2 0 2 1 2 0 2 0 1 0 2 0 1 2 1 2 1 2 0 2 1 2 1 2 0 1 2 0 1 0 2 0 2 1 2 1 0 2 0 2 0 2 0 2 0 1 2 1 0 2 1 0 1 2 1 0 1 0 1 0

2 0 1 0 1 2 0 2 1 2 1 2 0 2 1 0 2 0 1 0 1 0 1 2 0 1 2 1 2 0 1 2 0 2 1 2 1 0 1 0 2 0 2 1 2 1 0 1 2 1 2 1 0 1 2 1 2 1 0 1 0 1 0 2 1

0 1 2 0 1 2 1 2 1 2 0 1 0 1 0 2 1 2 0 1 0 1 0 2 0 1 0 2 0 2 1 2 1 2 0 2 0 2 0 2 1 0 1 2 1 2 0 1 0 1 2 1 0 2 0 2 0 1 0 1 0 2 0 2 1

2 1 0 1 0 2 1 0 2 1 2 1 2 0 2 0 2 0 2 1 2 0 1 0 2 1 2 0 2 1 2 0 1 0 2 1 2 0 1 2 1 0 2 0 2 1 2 0 2 1 0 1 2 1 0 2 0 1 0 1 0 2 1 2 0

1 0 1 0 1 2 0 2 1 2 0 1 2 0 1 2 0 1 0 2 1 2 1 0 1 2 1 2 1 2 0 2 0 1 2 0 1 2 0 2 0 2 1 0 1 0 2 0 1 0 2 0 1 2 1 0 1 2 1 0 2 1 2 1 0

2 0 1 0 1 2 0 1 0 1 2 1 0 2 1 2 1 0 2 0 1 2 1 0 2 0 1 0 2 0 2 0 1 0 2 0 1 2 0 1 2 1 2 0 1 0 1 2 1 2 0 1 0 2 1 2 1 2 1 2 1 2 0 2 1

0 1 2 1 2 0 1 0 2 0 1 0 1 2 1 2 0 1 2 1 0 2 1 0 1 2 0 1 2 0 1 0 2 1 2 1 2 1 0 1 0 2 0 2 0 2 1 2 0 1 2 1 0 2 1 2 1 2 0 1 0 2 1 0 2

1 2 0 1 2 1 2 1 0 1 0 2 1 0 2 0 1 2 1 2 0 2 1 2 1 2 0 2 0 2 1 0 2 1 0 2 0 2 0 1 2 1 0 2 0 1 2 0 1 0 1 0 1 0 1 0 1 0 1 2 0 1 2 1 0

2 0 1 2 1 2 1 0 2 0 1 0 2 1 0 2 1 0 1 0 1 0 2 0 1 2 1 0 1 0 1 0 1 0 1 0 2 1 2 1 2 1 0 2 1 0 1 0 2 1 2 1 2 0 2 0 1 0 2 0 1 2 0 2 1

2 1 2 0 1 2 0 2 1 0 1 2 1 0 2 0 2 1 2 0 1 2 1 0 2 1 0 1 0 2 1 2 1 2 0 2 1 0 2 0 2 1 2 1 0 1 0 2 0 1 2 1 2 1 2 1 0 2 1 2 0 2 1 0 1

2 0 1 2 1 0 2 0 1 2 1 2 0 1 2 0 2 0 1 0 2 0 2 1 0 1 0 1.
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(non)-malleability, 98, 173, 180, 181

adjacency matrix, 74
normalized, 75

adjacent, 73
Alon-Boppana bound, 78
automorphism, 266

balance problem, 92
bipartite, 75
birthday attack, 29
birthday paradox, 29
block cipher, 60

Cayley
graph, 84
hash, 89

Cheeger inequalities, 78
claw-free, 45
collision resistance, 12, 17, 18
collision-freeness, 17
commitment scheme, 39
computational security, 9
correlation intractable hash function,

179
cycle, 74
cycle problem, 91

diameter, 74
differential cryptanalysis, 31
digital signatures, 36
discrete logarithm, 48
distance, 73
DLP, 48

edge, 73
efficient, 10
elliptic curve, 266
endomorphism, 266
expander family, 77, 78
expander mixing lemma, 79
expanding constant, 77

factorization, 45
factorization problem, 93
Fiat-Shamir, 38

girth, 74
graph, 73

Cayley, 84
directed, 73
graphical representation, 73
regular, 75
undirected, 73
weighted, 75

graph generator, 84

hash function, 13
fixed-length hash function, 13
probabilistic hash function, 22

hash-and-sign paradigm, 38

ideal cipher model, 60
identification scheme, 38
IFP, 45
incident, 73
isogeny, 266

Kazhdan constant, 85
knapsack, 50
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Laplacian, 75
lifting attack, 100, 141, 148, 151, 156,

161
LPS, 102, 147

MAC, 33, 34, 194
MD, 25
Merkle-Damg̊ard, 25
message authentication code, 33, 34
Morgenstern, 104, 147
multicollisions, 30

negligible, 10
non-backtracking walk, 82
noticeable, 10
NP-complete, 50
NP-hard, 50

path, 73
path problem, 91
Pizer, 106, 165
POWHF, 22
PPT algorithm, 10
preimage resistance, 12, 14

always, 14
everywhere, 15
preimage resistance, 15

PRF, 20, 21
PRNG, 40
provable, 43
pseudorandom function, 20, 21
pseudorandom numbers generator, 40

Ramanujan, 79
random oracle, 23
rate, 61
reduction, 11
representation problem, 48, 92
RSA signatures, 177

second preimage resistance, 12, 16
always, 16

everywhere, 17
second preimage resistance, 17

seed, 21
signature scheme, 37
spectral gap, 77
strong collision resistance, 17
strongly universal hash function, 20
subgroup attack, 96, 124, 125
subgroup attacks, 127
subset sum problem, 50
SUHF, 20
SVP, 51
SWIFFT, 57
symmetrization, 73

two-paths problem, 90

UHF, 19, 20
universal hash function, 19, 20
UOWHF, 16

vertex, 73
vertex transitive, 76
VSH, 52
VSSR, 53

weak collision resistance, 16

Zémor-Tillich, 101, 111, 185
projective, 136
vectorial, 134

ZesT, 185
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