
On a particular case
of the bisymmetric equation for quasigroups

Christophe Petit1∗†, Mathieu Renauld, François-Xavier Standaert1‡
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Abstract

We characterize the solutions of the equation

D(G(x, y), G(u, v)) = G(D(x, u), T (y, v)) (1)

where D, G and T are quasigroups. We also discuss the particular case when D = T .

1 Introduction and Notations

A quasigroup on a set Q is an operation (·) : Q×Q→ Q such that for any a, b ∈ Q, there
are unique x, y such that a · x = b and y · a = b. In this paper, we use small letters for
elements of Q and capital letters for quasigroups. We use greek letters for permutations on
Q. If x ∈ Q and α is a permutation on Q, we write α(x) for the image of x by α. We write
βα for the composition of α and β, where α is applied first.

Two quasigroups ⊕ and ⊗ on a same set Q are isotopic if there exist three permutations
α, β, γ of Q such that for any x, y ∈ Q, we have x ⊗ y = (xα ⊕ yβ)γ−1. When (Q,+) is
an Abelian group and α is a permutation on Q, we say that α is additive for + if for any
x, y ∈ Q, we have α(x + y) = α(x) + α(y). When α and β are two permutations on the
same set Q, we say that α and β commute if for all x ∈ Q, we have αβ(x) = βα(x).

Functional equations on quasigroups have been previously considered in [1, 2, 3]. In [1],
Aczél, Belousov and Hosszú studied various quasigroup equations, including the generalized
bisymmetry equation

A(B(x, y), C(u, v)) = D(E(x, u), F (y, v)).

They showed that for any solution of this equation, all the quasigroups A,B,C,D,E, F
are isotopic to the same Abelian group. Here, we show that the additional constraints
B = C = D, A = E imply some additivity and commutativity properties.

∗Corresponding author
†FRS-FNRS Research Collaborator at Université catholique de Louvain
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2 Our Results

Let G,D, T satisfying (1). From Theorem 3 in Aczél, Belousov, Hosszú [1], there exist an
Abelian group + and 6 permutations ψ, ε, δ, ϕ, β, γ such that

G(x, y) = ψ(x) + ε(y), D(x, y) = δ(x) + ϕ(y), T (x, y) = ε−1(β(x) + γ(y)). (2)

Let − be such that x+ y = z ⇔ x = z − y, and let e be the neutral element of +.

Proposition 1 Let G,D, T be three quasigroups. These quasigroups satisfy

D(G(x, y), G(u, v)) = G(D(x, u), T (y, v))

if and only if there exist an Abelian group +, two constants k1, k2 and four permutations
ψ̂, δ̂, ϕ̂, ε such that the three permutations ψ̂, δ̂ and ϕ̂ are additive for +, the permutation ψ̂
commutes with both δ̂ and ϕ̂, and

G(x, y) = ψ̂(x) + ε(y) + k1,

D(x, y) = δ̂(x) + ϕ̂(y) + k2,

T (x, y) = ε−1
(
δ̂ε(x) + ϕ̂ε(y) + k3

)
,

where k3 := δ̂(k1) + ϕ̂(k1)− k1 + k2 − ψ̂(k2).

When we additionally impose T = D, we get

Proposition 2 Let G,D be two quasigroups. These quasigroups satisfy

D(G(x, y), G(u, v)) = G(D(x, u), D(y, v)) (3)

if and only if there exist an Abelian group +, two constants k1, k2 and four permutations
ψ̂, δ̂, ϕ̂, ε̂, all of them additive for +, such that both ψ̂ and ε̂ commute with both δ̂ and ϕ̂,

δ̂(k1) + ϕ̂(k1) + k2 = ψ̂(k2) + ε̂(k2) + k1

and

G(x, y) = ψ̂(x) + ε̂(y) + k1,

D(x, y) = δ̂(x) + ϕ̂(y) + k2.

3 Proof of Proposition 1

Proving that any G,D, T defined as in Proposition 1 satisfy Equation (1) is a straighforward
check. We now prove that any solution of Equation (1) is as in Proposition 1.

From Equations (1) and (2), we get

δ(ψ(x) + ε(y)) + ϕ(ψ(u) + ε(v)) = ψ(δ(x) + ϕ(u)) + β(y) + γ(v). (4)

When x = ψ−1(e), Equation (4) gives

δε(y)− β(y) = ψ(δψ−1(e) + ϕ(u)) + γ(v)− ϕ(ψ(u) + ε(v)).
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Since this equation must be satisfied for any y, u, v, the left and right terms must be equal
to a constant value c1. We deduce

δε(y)− β(y) = c1. (5)

Taking y = β−1(e), we get
c1 = δεβ−1(e).

Similarly when u = ψ−1(e), Equation (4) gives

ϕε(v)− γ(v) = ψ(δ(x) + ϕψ−1(e)) + β(y)− δ(ψ(x) + ε(y))

hence
ϕε(v)− γ(v) = c2, (6)

where
c2 = ϕεγ−1(e).

Susbtituting Equations (5) and (6) in Equation (4), we get

δ(ψ(x) + ε(y)) + ϕ(ψ(u) + ε(v)) = ψ(δ(x) + ϕ(u)) + δε(y)− c1 + ϕε(v)− c2.

We deduce the following functional equation in δ, ψ and ϕ only

δ(ψ(x) + y) + ϕ(ψ(u) + v) = ψ(δ(x) + ϕ(u)) + δ(y) + ϕ(v)− c1 − c2. (7)

Taking v = e and x = δ−1(e), we get

ψϕ(u)− ϕψ(u) = δ
(
ψδ−1(e) + y

)
− δ(y)− ϕ(e) + c1 + c2,

which implies
ψϕ(u)− ϕψ(u) = c3, (8)

where
c3 = ψϕψ−1ϕ−1(e).

Similarly substituting y = e and u = ϕ−1(e) in Equation (7), we get

ψδ(x)− δψ(x) = ϕ
(
ψϕ−1(e) + v

)
− δ(e)− ϕ(v) + c1 + c2,

which implies
ψδ(x)− δψ(x) = c4, (9)

where
c4 = ψδψ−1δ−1(e).

Equation (7) may be re-written as

δ
(
δ−1(x) + δ−1(y)

)
+ϕ

(
ϕ−1(u) + ϕ−1(v)

)
= ψ

(
δψ−1δ−1(x) + ϕψ−1ϕ−1(u)

)
+y+v−c1−c2.

Using Equations (8) and (9), this leads to

δ
(
δ−1(x) + δ−1(y)

)
+ϕ

(
ϕ−1(u) + ϕ−1(v)

)
= ψ

(
ψ−1(x+ c4) + ψ−1(u+ c3)

)
+y+v−c1−c2.

(10)
Since + is Abelian, we can swap x and y or u and v without changing the left-hand term of
Equation (10). We therefore obtain the following functional equation in ψ only:

ψ
(
ψ−1(x⊕ c4) + ψ−1(u⊕ c3)

)
+ y + v = ψ

(
ψ−1(y ⊕ c4) + ψ−1(v ⊕ c3)

)
+ x+ u.
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Replacing x by ψ(x)− c4, u by ψ(u)− c3, y by ψ(y)− c4 and v by ψ(v)− c3, we get

ψ(x+ u)− ψ(x)− ψ(u) = ψ(y + v)− ψ(y)− ψ(v),

hence
ψ(x⊕ u)− ψ(x)− ψ(u) = c5 (11)

for a constant c5 such that

c5 = ψ(e+ e)− ψ(e)− ψ(e) = e− ψ(e).

Using Equation (11), Equation (10) becomes

δ(δ−1(x) + δ−1(y)) + ϕ(ϕ−1(u) + ϕ−1(v)) = x+ y + u+ v + c4 + c3 − ψ(e)− c1 − c2

or

δ(x+ y)− δ(x)− δ(y) = ϕ(u) + ϕ(v)− ϕ(u+ v) + c4 + c3 − ψ(e)− c1 − c2. (12)

This implies
δ(x+ y)− δ(x)− δ(y) = c6 (13)

where c6 = e	 δ(e). On the other hand, Equation (12) also implies

ϕ(u) + ϕ(v)− ϕ(u+ v) = c7 (14)

where c7 = ϕ(e). Let now
ψ̂ := ψ − ψ(e).

Equation (11) implies

ψ̂(x⊕ u) = ψ(x⊕ u)− ψ(e) = ψ(x) + ψ(u)− 2ψ(e) = ψ̂(x) + ψ̂(u), (15)

in other words ψ̂ is additive for +. Similarly, Equations (13) and (14) imply that δ̂ := δ−δ(e)
and ϕ̂ := ϕ− ϕ(e) are additive. Equation (8) and the additivity of ϕ̂ and ψ̂ now imply

ψ̂ϕ̂(u) + ψ̂ϕ(e) + ψ(e) = ϕ̂ψ̂(u) + ϕ̂ψ(e) + ϕ(e) + c3.

For u = e, it follows that

ψ̂ϕ(e) + ψ(e) = ϕ̂ψ(e) + ϕ(e) + c3

hence Equation (8) eventually implies that

ψ̂ϕ̂(u) = ϕ̂ψ̂(u),

in other words ψ̂ and ϕ̂ commute. Similarly, Equation (9) implies that ψ̂ and δ̂ commute.
By Equations (5) and (6), we have

β(x) + γ(y) = δε(x)− c1 + ϕε(y)− c2 = δ̂ε(x) + ϕ̂ε(y) + δ(e) + ϕ(e)− c1 − c2.

Defining k1 := ψ(e), k2 := δ(e) + ϕ(e) and k3 := δ(e) + ϕ(e) − c1 − c2, we deduce from
Equation (2) that

G(x, y) = ψ̂(x) + ε(y) + k1,

D(x, y) = δ̂(x) + ϕ̂(y) + k2,

T (x, y) = ε−1
(
δ̂ε(x) + ϕ̂ε(y) + k3

)
,
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with ψ̂, δ̂ and ϕ̂ with the properties required. Using the additivity of δ̂, ϕ̂ and ψ̂, we compute

D(G(x, y), G(u, v)) = δ̂
(
ψ̂(x) + ε(y) + k1

)
+ ϕ̂

(
ψ̂(u) + ε(v) + k1

)
+ k2

= δ̂ψ̂(x) + δ̂ε(y) + δ̂(k1) + ϕ̂ψ̂(u) + ϕ̂ε(v) + ϕ̂(k1) + k2

and

G(D(x, u), T (y, v)) = ψ̂
(
δ̂(x) + ϕ̂(u) + k2

)
+ (δ̂ε(y) + ϕ̂ε(v) + k3) + k1.

= ψ̂δ̂(x) + ψ̂ϕ̂(u) + ψ̂(k2) + δ̂ε(y) + ϕ̂ε(v) + k3 + k1.

Since ψ̂ commutes with both ϕ̂ and δ̂, we deduce

G(D(x, u), T (y, v)) = δ̂ψ̂(x) + ϕ̂ψ̂(u) + ψ̂(k2) + δ̂ε(y) + ϕ̂ε(v) + k3 + k1

= D(G(x, y), G(u, v)) + ψ̂(k2) + k3 + k1 − δ̂(k1)− ϕ̂(k1)− k2.

Equation (1) then implies

k3 = δ̂(k1) + ϕ̂(k1)− k1 + k2 − ψ̂(k2).

This concludes the proof of Proposition 1.

4 Proof of Proposition 2

Proving that any G,D, T defined as in Proposition 2 satisfy Equation (3) is a straighfor-
ward check. We now prove that any solution of Equation (3) is as in Proposition 2. By
Proposition 1, we have

G(x, y) = ψ̂(x) + ε̂(y) + k1, D(x, y) = δ̂(x) + ϕ̂(y) + k2

for permutations ψ̂, δ̂, ϕ̂, ε̂ such that ψ̂, δ̂ and ϕ̂ are additive for +, and moreover ψ̂ commutes
with both δ̂ and ϕ̂. By symmetry of D and G in Equation (3), ε̂ must also be distributive for
+ and it must commute with both δ̂ and ϕ̂. As in the proof of Proposition 1, we compute

D(G(x, y), G(u, v)) = δ̂ψ̂(x) + δ̂ε(y) + δ̂(k1) + ϕ̂ψ̂(u) + ϕ̂ε(v) + ϕ̂(k1) + k2.

Similarly, we have

G(D(x, y), D(u, v)) = ψ̂δ̂(x) + ψ̂ϕ̂(u) + ϕ̂(k2) + ε̂δ̂(y) + ε̂ϕ̂(v) + ε̂(k2) + k1.

Equation (3) then leads to

δ̂(k1) + ϕ̂(k1) + k2 = ψ̂(k2) + ε̂(k2) + k1.

This concludes the proof of Proposition 2.
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improve both the content of our main results and their presentation.
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