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Abstract The security of many cryptographic protocols relies on the hardness of some computational
problems. Besides discrete logarithm or integer factorization, other problems are regularly proposed as
potential hard problems. The factorization problem in finite groups is one of them. Given a finite group
G, a set of generators S for this group and an element g ∈ G, the factorization problem asks for a
“short” representation of g as a product of the generators. The problem is related to a famous conjecture
of Babai on the diameter of Cayley graphs. It is also motivated by the preimage security of Cayley hash
functions, a particular kind of cryptographic hash functions. The problem has been solved for a few
particular generator sets, but essentially nothing is known for generic generator sets.

In this paper, we make significant steps towards a solution of the factorization problem in the group
G := SL(2,F2n), a particularly interesting group for cryptographic applications. To avoid considering all
generator sets separately, we first give a new reduction tool that allows focusing on some generator sets
with a “nice” special structure. We then identify classes of trapdoor matrices for these special generator
sets, such that the factorization of a single one of these matrices would allow efficiently factoring any
element in the group. Finally, we provide a heuristic subexponential time algorithm that can compute
subexponential length factorizations of any element for any pair of generators of SL(2,F2n).

Our results do not yet completely remove the factorization problem in SL(2,F2n) from the list of
potential hard problems useful for cryptography. However, we believe that each one of our individual
results is a significant step towards a polynomial time algorithm for factoring in SL(2,F2n).

1 Introduction

Cryptographic protocols use computational assumptions as axioms in their security proofs. Typical as-
sumptions include the hardness of factoring large integers or computing discrete logarithms in some
groups, but other assumptions are regularly proposed [40,27,31]. In this paper, we investigate the hard-
ness of the factorization problem in finite groups, in particular in the group SL(2,F2n).

1.1 Notations

We denote by F2n the field with 2n elements. Let G := SL(2,F2n) be the group of 2 × 2 matrices with
elements in F2n and determinant 1. For any A :=

(
a b
c d

)
∈ G, we write A′ for the transpose matrix of A

that is ( a cb d ). We write t(A) := a+d for the trace of A and s(A) := b+c. We write I for the identity matrix
( 1 0
0 1 ) ∈ G. For any non-zero λ, we write Λ(λ) :=

(
λ 0
0 λ−1

)
. For any w, we write O(w) :=

(
w+1 w
w w+1

)
. We
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will see that these matrices are the orthogonal matrices of SL(2,F2n). For any t, we write E(t) := ( t 1
1 0 )

and we call these matrices Euclidean matrices. For any w1, ..., wk ∈ F2n , we write < w1, ..., wk >+ for
the group additively generated by w1, ...wk. For any x ∈ F2n , we write

√
x for the (unique) y such that

y2 = x. For any a, b ∈ F2n with (a, b) 6= (0, 0), we write [a : b] for the projective point that is the
equivalence class of ( a b ) with respect to the equivalence relation ( a1 b1 ) ∼ ( a2 b2 ) ⇔ a1b2 = a2b1. For
any w ∈ F2n , the algebraic degree of w is the minimal degree of all polynomials p with coefficients in F2

satisfying p(w) = 0.
The value of n parameterizes the “size” of the problem. All our complexity estimates will be with

respect to this value. For example, by a polynomial length product of a set S ⊂ G we mean a product of
at most p(n) elements of S for some polynomial p. In some estimates, we use O for the “big O” notation:
given two functions f and g of n, we say that f = O(g) if there exist N ∈ N and c ∈ Z+ such that
n > N ⇒ f(n) ≤ cg(n). When exact complexity estimates are given in the paper, they refer to the
number of bit operations and not to the number of arithmetic operations in F2n .

Given S := {s1, ..., sk} ⊂ G, we define straight-line programs of S as sequences of simple line codes
of the form Mi := si, i = 1, ..., k followed by line codes of the form Mi := MjM` where j, ` ≤ i
and i = k + 1, ..., k′. We call k′ the length of this straight-line program. Straight-line programs allow
returning some factorizations of very large lengths (non polynomial in n) in a compressed form that may
have polynomial size in n [26].

1.2 Factoring in finite groups

The factorization problem in finite groups can be formulated as follows.

Problem 1 Let G be a non-Abelian finite group and let S = {s1, ..., sk} be a set of generators for this
group. Let L be a positive integer. Find an algorithm that given any element g ∈ G, returns a word
m1...m` with ` ≤ L and mi ∈ {1, ..., k} such that

∏̀
i=1

smi = g.

In this paper, we focus on the group G := SL(2,F2n). In a relaxation of Problem 1, we could also

allow negative powers, meaning that we would be searching for factorizations of the form
∏`
i=1 s

ei
mi = g

where ei ∈ {±1}. This paper only considers the restrictive version.
The hardness of the problem clearly depends on L and log |G|. Ideally, for a family of groups G with

increasing size, we would like an algorithm running in time T ≤ p1(log |G|) and returning factorizations
of length L ≤ p2(log |G|) where p1, p2 are polynomials. The mere existence of these short factorizations
is not guaranteed a priori, but for simple groups it appears likely in the light of Babai’s conjecture.

1.3 Babai’s conjecture

A famous and long-standing conjecture of Babai [4,14] states that “short” factorizations (in the above
sense) always exist for finite non-Abelian simple groups, whatever the choice of generator set. (Trivial
counter-examples exist in the case of cyclic groups.) The original conjecture allowed negative powers,
but a recent result of Babai [3] implies that the two versions of the conjecture are equivalent.

Babai’s conjecture has recently drawn a lot of attention from the Mathematics community, after a
breakthrough proof by Helfgott that the conjecture is true for the groups SL(2,Fp) when p is prime [14].
The conjecture (when allowing negative powers) has now been proved in large classes of groups including
the groups SL(2,F2n) considered in this paper [38,6].

Interestingly, Problem 1 can be seen as an algorithmic version of Babai’s conjecture. The algorithmic
version is a priori harder: it does not only require proving the existence of short factorizations, but also
finding an algorithmic method to compute them. The algorithmic version was mentioned as an open
problem in a book by Lubotzky (Problem 8.1.2 in [25]). As far as we know, it has only been solved
in a few papers for particular generator sets [5,19,21,35,41,20]. We point out that most of the proofs
of Babai’s conjecture that apply to any generator set are non constructive [14,15,38,6]. Problem 1 is
therefore a widely open problem, in particular for the group SL(2,F2n).
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1.4 Cayley hash functions

Problem 1 is also related to the security of a particular kind of cryptographic hash functions called Cayley
hash functions [49,32]. More precisely, the preimage resistance [28] of these functions would be affected
by a solution to Problem 1.

The design of Cayley hash functions was introduced by Zémor [48]. The parameters he originally
proposed in SL(2,Fp) were quickly broken and replaced by Tillich and Zémor [45] for a new generator
set in the group SL(2,F2n). The function drew the attention of the cryptography community for its
elegant design and its appealing properties, in particular its natural parallelism. Some weaknesses were
identified for subsets of the parameters [10,12,1,43] but no serious attack had been found for many
years. The design was rediscovered more than ten years later [9,34] but the new parameters proposed
were quickly broken [46,33]. Finally, the factorization problem for the Tillich-Zémor hash function was
broken as well [13,35].

Therefore, all the hash functions proposed following the Cayley hash function design are now broken.
However, as pointed out in [46,33,35,36], all these functions used parameters that were specially chosen
for efficiency. Considering the very nice properties of Cayley hash functions, their security for generic
parameters is a very interesting open problem.

This paper focuses on the case G = SL(2,F2n). This group seems to be the most interesting one for
cryptographic applications. First of all, a Cayley hash function built from an Abelian group would not
be collision resistant, another very important requirement for hash functions. Likewise, the security of
general linear groups GL(m,K) ≈ SL(m,K)×F∗2n would be similar to the security of their corresponding
special linear groups SL(m,K). Finally, taking m = 2 and K = F2n makes the group law more efficient in
both software and hardware implementations, which is also very important for cryptographic applications.

1.5 Previous work on SL(2,F2n)

The factorization problem in SL(2,F2n) was solved in [5] for appropriately chosen generator sets S
containing 3 elements. It has also been recently solved by Petit and Quisquater [35] for the particular
generators A := (X 1

1 0 ) , B :=
(
X X+1
1 1

)
that correspond to the Tillich-Zémor hash function [45]. In this

paper, we focus on the two generators case, where S := {A,B} for two matrices A,B ∈ SL(2,F2n) that
generate the group. In this case, a heuristic attack for generic generator sets was given in [37]. The attack
runs in time roughly 2n/2 and it produces factorizations of length roughly n3.

The algorithm of Petit and Quisquater [35] first replaces the original Tillich-Zémor generators by
the following slightly simpler ones Ã := (X 1

1 0 ) , B̃ :=
(
X+1 1
1 0

)
. Interestingly, matrices of the form

(
ti 1
1 0

)
can be linked to the famous Euclidean algorithm [13]. The reduction from one set of generators to the
other one is obtained by conjugating both generators by A. In a second step, the algorithm uses a
factorization of one matrix M of the form

(
0 b
c d

)
to compute a factorization of any matrix in the group.

The factorization of M as a product of Ã and B̃ was provided by Grassl et al. using an algorithm of
Mesirov and Sweet [13,29].

Petit and Quisquater’s algorithm seems very specific to the generators of the Tillich-Zémor hash
function. The connection to the Euclidean algorithm requires generators of the form

(
ti 1
1 0

)
and Mesirov

and Sweet’s algorithm can only be used for the matrices Ã and B̃. Using the results of Lauder [22], the
whole attack can be extended to a finite number of generator sets [36]. However, the hardness of the
factorization problem is a widely open problem for generic (random) generator sets, even if the generators
are constrained to belong to

{(
ti 1
1 0

)
|ti ∈ F2n

}
.

1.6 Contributions of this paper

In this paper, we follow a three-step strategy for factoring in G = SL(2,F2n):

1. We reduce generic generator sets to other simpler ones.
2. For some of these simpler generator sets, we identify classes of trapdoor matrices, such that factoring

only one of these matrices would allow factoring any matrix in the group.
3. We factor one trapdoor matrix.
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This approach is inspired by Petit and Quisquater’s algorithm for the Tillich-Zémor parameters [35],
that used a “trapdoor matrix” previously found by Grassl et al. [13].

The main contributions of our paper are a series of techniques to perform Steps 1 and 2 of the
above program. Whereas there could be about 26n different pairs of generators to consider at first sight,
our reductions allow focusing on some classes of about 2n “simpler” generator sets, including symmetric
matrices, diagonal matrices Λ(λ), orthogonal matrices O(w) or Euclidean matrices E(t). For a symmetric
generator set {A,A′}, we then show that the knowledge of a factorization of any single matrix with ( 1

1 )
as eigenvector allows factoring efficiently any matrix in the group. We also provide sufficient conditions
for a reduction to Tillich-Zémor generators.

Using these reduction tools, we finally propose two new heuristic algorithms solving the factorization
problem for generic generator sets of SL(2,F2n). The second algorithm computes factorizations of subex-
ponential lengths in subexponential time complexity (both complexity measures are taken with respect
to the parameter n). Previous algorithms either focused on particular generator sets, had an exponential
time complexity or produced exponential length factorizations.

1.7 Roadmap

The remaining of this paper is organized according to our three-step strategy for factoring in SL(2,F2n).
Section 2 provides reduction tools between various generator sets; Section 3 proves our results on trapdoor
matrices; Section 4 describes and analyzes our new factorization algorithms; Section 5 concludes the
paper.

2 Changing the generators

Since almost all pairs of elements in SL(2,F2n) generate the whole group [24], we focus on generator
sets S := {A,B} containing only two elements. There are about |SL(2,F2n)|2 ≈ 26n such generator sets.
Instead of solving a factorization problem for each generator set separately, we propose to reduce generic
sets to other “simpler” ones.

At first sight, three simple reduction tools may naturally come to mind. First, we can use substitutions:
clearly if we know a short factorization of A2 and B2 as products of A and B, then the factorization
problem for the set {A,B} reduces to the factorization problem for the set {A2, B2}. Second, we can use
field isomorphisms: if A2 and B2 are the images of A and B through a field isomorphism of F2n , then
any product of A and B straightforwardly transforms into a product of A2 and B2 through the same
isomorphism. Third, we can use conjugations as in [13,35]: for any S ∈ GL(2,F2n), a factorization of
S−1gS as a product of S−1AS and S−1BS directly leads to a factorization of g as a product of A and
B.

In this section, we introduce new, more elaborate reduction tools from generic generator sets to some
“small” classes of generators, parameterized by a single parameter. In Section 2.1, we show that S can
be replaced by a symmetric generator set S̃ := {Ã, Ã′} as long as AB and BA generate the group. In
Sections 2.2 and 2.3, we show that this new set can often in turn be replaced by a new set containing a
symmetric matrix and orthogonal matrices.

2.1 Symmetric generators

We first replace the generator set S by another set S̃ = {Ã, B̃} where Ã = B̃′. For any matrices A,B,
the matrices AB and BA have the same trace.

Lemma 1 Let A,B ∈ G. Then t(AB) = t(BA).

Given two matrices with the same trace that generate the whole group, we can conjugate these two
matrices to obtain two new matrices Ã and B̃ such that Ã = B̃′.

Lemma 2 Let A,B generate G such that t(A) = t(B). Then there exists S ∈ GL(2,F2n) such that
(S−1AS)′ = S−1BS.
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Proof: Let a1, b1, c1, a2, b2, c2, t ∈ F2n such that A =
(
a1 b1
c1 a1+t

)
and B =

(
a2 b2
c2 a2+t

)
. For any S = (w x

y z )
with wz + xy = 1, we have(

z x
y w

)(
ai bi
ci ai + t

)(
w x
y z

)
=

(
ciwx+ aiwz + aixy + txy + biyz cix

2 + txz + biz
2

ciw
2 + twy + biy

2 ciwx+ aiwz + twz + aixy + biyz

)
.

The conditions (S−1AS)′ = S−1BS and det(S) = 1 lead to the algebraic system
(c1 + c2)wx+ (a1 + a2)(wz + xy) + (b1 + b2)yz = 0

c2w
2 + twy + c1x

2 + txz + b2y
2 + b1z

2 = 0

c1w
2 + twy + c2x

2 + txz + b1y
2 + b2z

2 = 0

wz + xy = 1

or 
(c1 + c2)wx+ (b1 + b2)yz = (a1 + a2)

(c1 + c2)(w2 + x2) + (b1 + b2)(y2 + z2) = 0

c1w
2 + twy + c2x

2 + txz + b1y
2 + b2z

2 = 0

wz + xy = 1

If b1 + b2 6= 0, we first conjugate both A and B by

S1 :=

(
1 1

1 +
√

c1+c2
b1+b2

√
c1+c2
b1+b2

)
.

This way we obtain two new matrices Â =
(
â1 b̂1
ĉ1 â1+t

)
and B̂ =

(
â2 b̂2
ĉ2 â2+t

)
such that b̂1 = b̂2 and

ĉ1 + ĉ2 = b1 + b2 6= 0.
Let us now assume b1 = b2. We have c1 6= c2, since otherwise we would have either a1 = a2 or

a1 = a2 + t. This would imply either B = A or B = A−1, contradicting the fact that A,B generate
SL(2,F2n). Let b := b1 = b2. We have b 6= 0 since otherwise the two matrices are lower triangular and
they do not generate the whole group. Since 1 = ai(ai + t) + bci, this also implies a1 + a2 6= 0. The
previous system becomes 

(c1 + c2)wx = (a1 + a2)

w2 + x2 = 0

c1w
2 + twy + c2x

2 + txz + b(y2 + z2) = 0

wz + xy = 1

.

The first two equations are satisfied if w = x =
√

a1+a2
c1+c2

. The last equation is satisfied if z = y+
√

c1+c2
a1+a2

.

Finally, a small computation using a2i + ait + bci = 1 shows that the third equation is then trivially
satisfied. �

From now on, any generator set S = {A,B} of SL(2,F2n) such that A = B′ will be called a symmetric
generator set. Let S := {A,B} be an arbitrary generator set for G. If the matrices AB and BA generate
the whole group, then Lemma 1 and Lemma 2 can be used to reduce the original factorization problem
to a new factorization problem with a symmetric set of generators.

Proposition 3 Let S = {A,B} ⊂ SL(2,F2n) such that {AB,BA} is a generator set of SL(2,F2n). Then
the factorization problem in SL(2,F2n) for S = {A,B} is reducible to another factorization problem in
SL(2,F2n) with a symmetric set of generators. The reduction increases the factorization lengths by a
factor 2.

Proof: Let S be a matrix such that (S−1ABS)′ = S−1BAS. The proof of Lemma 2 provides a polyno-
mial time construction for S: the most costly part is the computation of square roots in F2n which just
takes cubic time through a modular exponentiation. Let Ã := S−1ABS and B̃ := S−1BAS. Suppose we
have a factorization algorithm for S̃ := {Ã, B̃}. Given g ∈ G, we apply this algorithm to S−1gS and get
a factorization P̃ . We then construct a new product P of A and B by replacing any occurrence of Ã and
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B̃ in P̃ by respectively AB and BA. We finally return this factorization P . Its length is exactly twice
the length of the factorization returned by the factorization algorithm for Ã and B̃. �

We remark that the condition “{AB,BA} is a generator set of SL(2,F2n)” is required to apply
Lemma 2 in the proof of Proposition 3. Indeed, the set {AB,BA} does not necessarily generate the
whole group even if the set {A,B} does.

2.2 Orthogonal matrices

In this section, we study the orthogonal subgroup of G.

Lemma 4 The set of orthogonal matrices of SL(2,F2n) is the set{
O(w) :=

(
w+1 w
w w+1

)
|w ∈ F2n

}
.

Proof: Clearly these matrices are orthogonal. On the other hand, let w, x, y, z ∈ F2n such that wz+xy =
1 and

( 1 0
0 1 ) = (w x

y z ) (w y
x z ) =

(
w2+x2 wy+xz

wy+xz y2+z2

)
.

We deduce w2 + x2 = 1 hence w = x + 1. Similarly, we obtain y = z + 1 and finally 1 = wz + xy =
xz + z + xz + x = x+ z. �

Orthogonal matrices form an Abelian subgroup of SL(2,F2n).

Lemma 5 For any w1, w2 ∈ F2n , we have O(w1)O(w2) = O(w1+w2). In particular, for any w ∈ F2n we
have O(w)2 = I. For any w1, ..., wk ∈ F2n the set of matrices multiplicatively generated by {O(wi)|1 ≤ i ≤
k} is an Abelian subgroup of G. If w1, . . . , wk are linearly independent over F2, this group is isomorphic
to the vector space Fk2 .

Conjugations by orthogonal matrices preserve both the trace and the sum of the off-main diagonal
elements. In fact, the converse is almost true as well.

Lemma 6 Let Mi =
(
ai bi
ci di

)
∈ G, i = 1, 2. For i = 1, 2, let ti := t(Mi) = ai+di and si := s(Mi) = bi+ci.

If M1 and M2 are conjugate by an orthogonal matrix, then t1 = t2 and s1 = s2. Conversely,

1. If t1 = t2 6= s1 = s2, then M1 and M2 are conjugate by O(w) where w := a1+a2+b1+b2
s1+t1

.
2. If t1 = t2 = s1 = s2 6= 0 then either a1 + a2 = b1 + b2 or a1 + a2 = b1 + b2 + t.

(a) In the first case, then M1 and M2 are conjugate by O(w) where w := a1+a2
t .

(b) In the second case, M1 and M2 are not conjugate by any orthogonal matrix unless M1 = M2.
3. If t1 = t2 = s1 = s2 = 0, then M1 and M2 are orthogonal matrices. They are not conjugate by any

orthogonal matrix unless M1 = M2.

Proof: M1 and M2 are conjugate by O(w) if and only if O(w)M2 = M1O(w), that is(
a2w+c2w+a2 b2w+d2w+b2
a2w+c2w+c2 b2w+d2w+d2

)
=
(
a1w+b1w+a1 a1w+b1w+b1
c1w+d1w+c1 c1w+d1w+d1

)
.

Comparing the traces of the left and right-hand sides we obtain

(t2 + s2)w + t2 = (t1 + s1)w + t1.

Similarly by comparing the sum of the non diagonal terms we get

(t2 + s2)w + s2 = (t1 + s1)w + s1.

Together, the two equations imply s1 = s2 and t1 = t2 which proves the first part of the lemma.
Conversely, suppose that s := s1 = s2 and t := t1 = t2. The above matrix equation is equivalent to{

(a1 + a2 + b1 + b2 + t)w = b1 + b2,

(a1 + a2 + b1 + b2 + s)w = a1 + a2.
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If s 6= t, let w := a1+a2+b1+b2
s+t . Using det(Mi) = a2i + b2i + tai + sbi = 1, , we have

(a1 + a2 + b1 + b2 + t)w + b1 + b2

= (s+ t)−1 [(a1 + a2 + b1 + b2 + t)(a1 + a2 + b1 + b2) + (b1 + b2)(s+ t)]

= (s+ t)−1
[
a21 + a22 + b21 + b22 + s(b1 + b2) + t(a1 + a2)

]
= (s+ t)−1 [1 + 1] = 0.

and similarly, (a1 + a2 + b1 + b2 + s)w + a1 + a2 = 0.
If s = t, then the determinant condition restricts the value of a+ b to the solutions of the quadratic

equation
det
(
ai bi
bi+t ai+t

)
= (ai + bi)(ai + bi + t) = 1

hence either a1 + a2 = b1 + b2 or a1 + a2 = b1 + b2 + t. In the first case, both equations are equivalent to
tw = a1 + a2. In the second case, they give a1 + a2 = b1 + b2 = 0.

Finally, if s = t = 0, the determinant condition implies (ai + bi)
2 = 1, hence ai = bi + 1. �

A first consequence of this lemma is that any symmetric matrix with non-zero trace can be diagonal-
ized by an orthogonal matrix.

Lemma 7 Let M =
(
a b
b d

)
∈ SL(2,F2n) and let t := a + d 6= 0. There exist λ,w ∈ F22n such that

M = O(w)Λ(λ)O(w). We have λ,w ∈ F2n if and only if the roots of α2 + tα+ 1 belong to F2n .

Proof: By hypothesis, we have s(M) = s(Λ(λ)) = 0 and t 6= 0. By Lemma 6, M and Λ(λ) are conjugate
by O(w) if and only if λ+ λ−1 = t hence λ2 + tλ+ 1 = 0. Moreover, we have w = a+b+λ

t . �

The s and t values of a matrix are invariant under transposition. In particular, two matrices that are
transpose of each other and verify t 6= s are conjugate of each other by an orthogonal matrix.

Lemma 8 Let A :=
(
a b
c d

)
∈ G and let A′ := ( a cb d ). Let t := a+ d and s := b+ c. Let A1 := A and for

any i > 1, let Ai := Ai−1Ai−1A
′
i−1. Let si := s(Ai) and ti := t(Ai). We have si = s for any i ≥ 1, t1 = t

and ti = t3i−1 + ti−1s
2 + ti−1 for any i > 1. For any i > 0 such that ti + s 6= 0, let wi := s

ti+s
. For these

i indices, we have Ai = O(wi)A
′
iO(wi).

Proof: For i = 1, we have s(A1) = s(A′1) = s and t(A1) = t(A′1) = t. Applying Lemma 6, A1 and A′1
are conjugate by an orthogonal matrix with w1 = a+b+a+c

s+t = s
s+t . For i = 2, we have

A2 := A1A1A
′
1 =

(
a3+ab2+abc+b2d a2c+abd+bc2+bd2

a2c+acd+b2c+bd2 ac2+bcd+c2d+d3

)
.

We have s2 = (ad+ bc)(b+ c) = s1 = s and t2 = a3 + d3 + (a+ d)(b2 + c2) + bc(a+ d) = (a+ d)((b2 +
c2) + a2 + d2 + ad+ bc) = t1(t21 + s2 + 1). As in the case i = 1, we deduce that A2 and A′2 are conjugate
by an orthogonal matrix with w2 = s2

s2+t2
= s

(s+t)(t2+ts+1) . The remaining cases follow by induction. �

2.3 Heuristic reductions to simpler generator sets with orthogonal matrices

In this section, we replace an initial symmetric generator set S := {A,A′} by new sets including “simpler”
matrices. Let n1 be a positive integer smaller than n. Let us consider the set

S̃ := {An1
, A′n1

} ∪ {O(wi)|1 ≤ i ≤ n1}

where the matrices An1
, O(wi) are as defined in Lemma 8. In any product

P :=

L∏
j=1

((
n1∏
i=1

O(wi)
ej,i

)
Aej,an1

(A′n1
)ej,b

)
(1)

where ej,i, ej,a, ej,b ∈ {0, 1}, the matrices An1 and A′n1
can be substituted by their corresponding products

of A and A′. The first step towards removing the orthogonal matrices in the product (1) is the following
lemma.
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Lemma 9 Let S := {A,A′} be a generator set of SL(2,F2n). Let s, t, Ai, si, ti, wi as in Lemma 8.
Let n1 ∈ N such that ti 6= s for all i ≤ n1. Then any product (1) can be reduced by the relations
Ai = O(wi)A

′
iO(wi) and O(wi)

2 = I into an equivalent product

P̃ := Q

n1∏
i=1

O(wi)
ei (2)

where Q is a product of A,A′ only and ei ∈ {0, 1}. The product Q has length at most 2·3n1−1·L. Moreover,
P̃ can be written with a straight-line program of length at most 6(n1−1)L+n1. The product (2) is unique
if w1, . . . , wn1 are linearly independent over F2n .

Proof: For any I ⊂ {1, . . . , n1}, we have
(∏

i∈I O(wi)
)
An1

= Bn1,I

(∏
i∈I O(wi)

)
where

B1,I :=

{
A1 if 1 6∈ I
A′1 if 1 ∈ I

and for i = 2, ..., n1,

Bi,I :=

{
Bi−1,IBi−1,IB

′
i−1,I if i 6∈ I

Bi−1,IB
′
i−1,IB

′
i−1,I if i ∈ I.

Similarly for any I ⊂ {1, . . . , n1}, we have(∏
i∈I

O(wi)

)
A′n1

=

(∏
i∈I

O(wi)

)
O(wn1

)An1
O(wn1

) =

(∏
i∈I′

O(wi)

)
An1

O(wn1
)

= Bn1,I′

(∏
i∈I′

O(wi)

)
O(wn1) = Bn1,I′

(∏
i∈I

O(wi)

)
where I ′ is the unique subset of {1, . . . , n1} such that n1 ∈ I ⇔ n1 6∈ I ′ and i ∈ I ⇔ i ∈ I ′ for any
i < n1.

Using these relations and the identities O(wi)
2 = I, we can succesively move all the orthogonal

matrices in (1) from left to right. Recursively, we see that the matrices Bi,I are products of {A,A′} of
length 3i−1. Moreover, both Bi,I and Bi,I can be constructed from Bi−1,I and Bi−1,I with a straight-
line program of length 3. If the wi are linearly independent, then the product (2) is unique since every
orthogonal matrix corresponds to a unique subset I ⊂ {1, . . . , n1}. �

We remark that if the values t, s are randomly distributed and if n1 is small enough compared to n,
the probability that ti = s for some i ≤ n1 tends to 0 as n tends to infinity. Indeed from Lemma 8, any ti
can be written as a polynomial function of s and t of degree 3i−1 in t. For any given s, the probability that
ti = s is very small as long as n1 is small enough compared to n, more precisely as long as (n1− 1) log2 3
is small enough compared to n. Note that in the unlikely event where ti = s for some i ≤ n1, we obtain
a matrix M := Ai satisfying s(M) = t(M) and s(M) = s 6= 0. The factorization problem can then be
solved as in Proposition 11 below.

Likewise, the probability that the wi are not linearly independent is very close to 1 if n1 is small
enough compared to n. Indeed if the wi are not linearly independent, then there exist I1, I2 ⊂ {1, . . . , n1}
such that

∏
i∈I1 O(wi) =

∏
i∈I2 O(wi). Following the proof of Lemma 9, we deduce a collision

Bn1,I1

(∏
i∈I1

O(wi)

)
= Bn1,I2

(∏
i∈I1

O(wi)

)
where Bn1,I1 6= Bn1,I2 . Equivalently, Bn1,I1 = Bn1,I2O for some O 6= I generated by {O(wi)|i < n1}.
Such a collision seems unlikely to occur for a random generator set S as long as n1 is small enough
compared to n, more precisely as long as n1 + 2 + 2n1 log2 3 is small enough compared to 3n.

We now provide a heuristic algorithm to reduce the factorization problem for the set S := {A,A′} to
the factorization problem for the set S̃ := {An1

, A′n1
}∪{O(wi)|1 ≤ i ≤ n1} where the matrices An1

, O(wi)
are as defined in Lemma 8. (For the sake of simplicity, we assume that the wi are linearly independent,
but the general case can be treated similarly). Let A be an algorithm solving the factorization problem
for S̃ := {An1

, A′n1
}∪{O(wi)|1 ≤ i ≤ n1}. Let R be a positive integer to be fixed later. Given an element

g ∈ SL(2,F2n), our algorithm takes the following steps.
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1. Create two empty lists Lw and Lfac to contain elements w(j) ∈ F2n and the factorizations of O(wj)
as products of A and A′. Let m := 0 and j := 1.

2. Generate a product r :=
∏R
i=1 (xiA+ (1− xi)A′) where xi ∈ {0, 1} are randomly chosen.

3. Apply A to h := r−1g and use Lemma 9 to write the result in the form h = QO(w) where w ∈<
w1, . . . , wn1 >+.

4. Generate a product rj :=
∏R
i=1 (xijA+ (1− xij)A′) where xij ∈ {0, 1} are randomly chosen.

5. Apply A to hj := r−1j and use Lemma 9 to write the result in the form hj = QjO(w(j)) where
w(j) ∈< w1, . . . , wn1

>+.
6. If w(j) 6∈< w(1), . . . , w(m) >+, add w(j) and the factorization O(w(j)) = rjQj to the lists Lw and
Lfac. Increment m and j by 1.

7. Let V :=< w(1), . . . , w(m) >+ be the vector space generated by the elements of Lw.
8. If w 6∈ V , go back to Step 2.
9. If w ∈ V , use linear algebra to write w =

∑m
j=1 ejw(j) with ej ∈ {0, 1}.

10. Return the factorization g = Q
∏m
j=1 (rjQj)

ej .

Clearly, the algorithm only returns correct answers when it terminates. We now argue that Steps 2
to 8 will only be repeated a bit more than n1 times on average. If elements r, rj generated in Steps 2 and 4
were uniformly distributed in SL(2,F2n), then elements hj in Step 5 would also be uniformly distributed
and the orthogonal matrices produced in Steps 3 and 5 would have the same distribution. This last
distribution would depend on A. If it was uniform in {O(w)|w ∈< w1, . . . , wn1 >+}, the probability that
the condition w ∈< w(1), . . . , w(m) >+ is not satisfied in Step 9 would exponentially decrease when m
increases. After n1 + 10 repetitions of Steps 2 to 8, the vector space V would be < w1, . . . , wn1

>+ with
a probability higher than 99%. Moreover if the distribution of the orthogonal matrices was not uniform,
the condition in Step 8 would actually only be satisfied sooner.

In the algorithm, matrices r, rj are not uniformly generated but are generated by random walks in
Step 2 and 4. It is known that random walks quickly converge to the uniform distribution on undirected
expander graphs and it has also been observed that Cayley graphs tend to be good expanders [16].
The analysis of our algorithm relies on the heuristic assumption that random walks quickly converge
in directed Cayley graphs of SL(2,F2n), an assumption supported by the fact that Babai’s conjecture
has been proved for SL(2,F2n). In fact, the analysis does not require that elements r, ri are uniformly
distributed, but only that the vector spaces generated by the orthogonal matrices constructed in Steps 3
and 5 intersect with a good probability. We use the following definition to capture an actually stronger
requirement.

Definition 1 Let S := {A,A′} be a generator set of SL(2,F2n) and let s, t, Ai, si, ti, wi, n1 as in
Lemma 8. Let A be an algorithm solving the factorization problem for S̃ := {An1

, A′n1
} ∪ {O(wi)|i ∈ I}

where I ⊂ {1, . . . , n1} is such that {wi|i ∈ I} is a basis of < w1, . . . , wn1
>+. Let DU be the uniform

distribution on SL(2,F2n) and let Dg,R be the distribution of the product g
∏R
i=1

(
xiA

−1 + (1− xi)A′−1
)

when xi ∈ {0, 1} are randomly chosen. For any r ∈ SL(2,F2n), let w(r) ∈< w1, . . . , wn1
>+ be the

parameter of the orthogonal matrix obtained by applying the algorithm A to g, applying Lemma 9 to the
result and removing the Q component. For any g ∈ SL(2,F2n) and any m ≥ 1, let PA,m

g,R be the probability
that < w(r1), . . . , w(rt) >+=< w(s1), . . . , w(st) >+ when the ri are generated according to DU and the
si are generated according to Dg,R. We say that A treats R-short products as random elements if for

any g ∈ SL(2,F2n) and any m > n1 + 10, we have PA,m
g,R > 1/2.

Since the size of SL(2,F2n) is roughly 23n and the diameters of expander graphs tend to be as small
as possible, random walks of length R := 6n seem to be sufficient for our algorithm.

Assumption 1 Let S, s, t, Ai, si, ti, wi, n1 and an algorithm A as in Definition 1. Then A treats
6n-short products as random elements.

Proposition 10 Let S := {A,A′} be a generator set of SL(2,F2n) and let s, t, Ai, si, ti, wi, n1 as in
Lemma 8. Under Assumption 1, the factorization problem for the set S can be reduced to the factorization
problem for the set S̃ := {An1

, A′n1
} ∪ {O(wi)|1 ≤ i ≤ n1}. Let A be an algorithm for S̃ and let L̂ be

the maximal value L appearing in all the products (1) returned by A. The reduction algorithm returns
factorizations of lengths at most 2(n1 + 1)3n1−1L̂ + 6(n1 + 1)n. Moreover, these factorizations can be
written as straight-line programs of lengths at most (n1 + 1)(6n1L̂− 6L̂+ 6n+ n1 + 1).
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Proof: Under Assumption 1, taking R := 6n ensures that the reduction algorithm succeeds with high
probability. The factorization returned is composed of a Q component and at most n1 orthogonal com-
ponents. Following Lemma 9, each of them has length at most 2 · 3n1−1L̂+ 6n and each component can
be written as a straight-line program of length at most 6(n1 − 1)L̂+ n1 + 6n. �

To conclude with the reduction tools introduced in this section, let us consider Proposition 10 with
n1 = 1. Let us define M := AA′ and suppose that the set S2 := {M,O(w1)} generates SL(2,F2n). With a
probability about one half, the symmetric matrix M can be replaced by a diagonal matrix Λ(λ) through
conjugation by the orthogonal matrix given in Lemma 7. Moreover with a very large probability, λ then
has algebraic degree n. The field F2n can then be seen as F2[λ]/(p(λ)) where p is the minimal polynomial
of λ over F2. If one of the two conditions is not satisfied, the matrix M can be replaced by another
short symmetric product of A and A′, until both conditions are satisfied (heuristically, we expect that
very short products will suffice). To solve the factorization problem for any set in practice, our heuristic
analysis shows that it is sufficient to focus on generator sets

Sw := {Λ(X), O(w)}

where w ∈ F2n depends on the initial parameters but X is a constant primitive element in the field.

The heuristic reduction tools presented in this section therefore restrict the generator sets of interest
from a family of roughly 26n elements (the group SL(2,F2n) contains about 23n matrices and most pairs
of them generate it) to some “one-dimensional” families of size 2n.

3 Changing the target: trapdoor matrices

Starting from some of the generator sets constructed in Section 2, we now reduce the factorization of
any element in SL(2,F2n) to the factorization of particular elements that we call trapdoor matrices.

3.1 Matrices with eigenvector (1, 1)′

For the parameters of the Tillich-Zémor hash function, Petit and Quisquater [35] showed how to factor
any matrix of SL(2,F2n) from the factorization of one particular matrix with a certain property. The
following proposition is inspired by this approach.

Proposition 11 Let S := {A,A′} be a generator set of G := SL(2,F2n). Let M ∈ SL(2,F2n) with
eigenvector equal to ( 1

1 ) such that the corresponding eigenvalue has algebraic degree n. Then any matrix
of SL(2,F2n) can be written in polynomial time as a product of at most 8n2 matrices M and M ′ and
4 matrices A. Given a straight-line program of length L′ factoring M as a product of A and A′, any
element of SL(2,F2n) can be represented as a straight-line program of length 7(n+ 1) + 2L′.

Proof: We first remark that M =
(
a b
c d

)
∈ G has ( 1

1 ) as eigenvector if and only if a+b+c+d = 0. Indeed,

we have M ( 1
1 ) =

(
a+b
c+d

)
so ( 1

1 ) is eigenvector if and only if a+ b = c+d. The corresponding eigenvalue is

λ := a+ b. Therefore, we can write M as M =
(
a b
b+t a+t

)
for some a, b, t satisfying a2 + at+ b2 + bt = 1.

Note that any power of M , say Mk, also has eigenvector ( 1
1 ), this time with corresponding eigenvalue

λk.
By our assumption on S, the knowledge of a factorization of M also provides a factorization of M ′

and MM ′. So we have a factorization of

MM ′ =
(
a b
b+t a+t

) (
a b+t
b a+t

)
=
(
a2+b2 (a+b)t

(a+b)t a2+b2

)
=
(

a2+b2 a2+b2+1
a2+b2+1 a2+b2

)
= O(λ2 + 1)

and for any k ∈ Z, a factorization of

MkM ′k = O(λ2k + 1).

We now argue that the matrices of the set {O(λ2k + 1), k = 1, ..., n} generate the whole orthogonal
subgroup of SL(2,F2n). Let p be the minimal polynomial of λ. It is also the minimal polynomial of λ2.
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By assumption, p has degree n. Let pi ∈ F2, i = 0, . . . , n such that that p(X) =
∑n
i=0 piX

i. Since p is
irreducible we have p0 = 1 (otherwise X would divide p) and

∑n
i=0 pi = 1 mod 2 (otherwise X+ 1 would

divide p). Since p is minimal, the set {1, λ2, . . . , λ2(n−1)} is a basis of F2n as a vector space over F2. By

elementary operations on the elements of this basis, we obtain another basis {1 +
∑n−1
i=1 pi(λ

2i + 1), λ2 +

1, . . . , λ2(n−1) + 1}. Finally, we observe that 1 +
∑n−1
i=1 pi(λ

2i + 1) = λ2n + p(λ2) +
∑n−1
i=1 pi = λ2n + 1,

hence the result.
It remains to show how to factor any non-orthogonal matrix g. Let A :=

(
a′ b′

c′ d′

)
with a′d′ + b′c′ = 1

and let g :=
(
α β
γ δ

)
with αδ + βγ = 1. Consider the equation

g = O(w1)AO(w2)AO(w3)AO(w4) (3)

in the four unknowns w1, w2, w3, w4 ∈ F2n . Equivalently, we have

AO(w2)A0(w3) = O(w1)gO(w4)A−1. (4)

This equation can be translated into a system of four polynomial equations over F2n . By elementary
transformations on these equations, we can instead consider the system

( 1 1 )AO(w2)AO(w3) ( 1
1 ) = ( 1 1 )O(w1)gO(w4)A−1 ( 1

1 )

( 1 0 )AO(w2)AO(w3) ( 1
1 ) = ( 1 0 )O(w1)gO(w4)A−1 ( 1

1 )

( 1 1 )AO(w2)AO(w3) ( 1
0 ) = ( 1 1 )O(w1)gO(w4)A−1 ( 1

0 )

( 1 0 )AO(w2)AO(w3) ( 1
0 ) = ( 1 0 )O(w1)gO(w4)A−1 ( 1

0 )

Since the determinant of both sides in (4) is 1 by construction, the last equation of this system is
automatically verified if the first three equations are satisfied. The first equation leads to

(a′2 + b′2 + c′2 + d′2)w2 + (a′ + b′ + c′ + d′)(α+ β + γ + δ)w4 + (a′ + d′)(a′ + b′ + c′ + d′)

+(a′ + c′)(β + δ) + (b′ + d′)(α+ γ) = 0

We have a′ + b′ + c′ + d′ 6= 0, otherwise A and A′ have eigenvector (1, 1) and they do not generate
SL(2,F2n). Therefore, we have

w2 =
(α+ β + γ + δ)w4 + (a′ + d′)

a′ + b′ + c′ + d′
+

(a′ + c′)(β + δ) + (b′ + d′)(α+ γ)

a′2 + b′2 + c′2 + d′2
. (5)

The second equation provides

(a′ + b′ + c′ + d′)(α+ β + γ + δ)w4w1 + [(a′ + c′)(β + δ) + (b′ + d′)(α+ γ)]w1 + p1(w2, w4) = 0

where p1 is a linear function of w2 and w4. As long as

(a′ + b′ + c′ + d′)(α+ β + γ + δ)w4 6= (a′ + c′)(β + δ) + (b′ + d′)(α+ γ), (6)

the second equation implies

w1 =
p1(w2, w4)

(a′ + b′ + c′ + d′)(α+ β + γ + δ)w4 + (a′ + c′)(β + δ) + (b′ + d′)(α+ γ)
. (7)

Finally, the third equation gives

(a′ + b′ + c′ + d′)2w2w3 + (a′ + d′)(a′ + b′ + c′ + d′)w3 + p2(w2, w4) = 0

where p2 is an afine function of w2 and w4. By Equation (5), Condition (6) is equivalent to (a′ + b′ +
c′ + d′)w2 6= a′ + d′. As long as this condition holds, we have

w3 =
p2(w2, w4)

(a′ + b′ + c′ + d′)[w2(a′ + b′ + c′ + d′) + (a′ + d′)]
. (8)

Summarizing, if there exists w4 satisfying (6), then Equations (5), (7) and (8) provide corresponding
w1, w2, w3 to factor g as in Equation (3). Looking at the condition (6) more closely, this will be the case
as long as α + β + γ + δ 6= 0, in other words as long as g does not have eigenvector ( 1

1 ). On the other
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hand, if g has eigenvector ( 1
1 ), then A−1g does not have eigenvector ( 1

1 ), otherwise A and A′ will also
have eigenvector ( 1

1 ), and they will not generate the whole group. In that case, we can apply the previous
reasoning to A−1g and deduce a decomposition of g as

g = AO(w1)AO(w2)AO(w3)AO(w4).

From the proof, we see that any matrix g can be written as a product of at most 4 orthogonal matri-
ces and 4 occurrences of A. Each orthogonal matrix can be written as a product of at most n matrices
O(λ2k+1) and each of these matrices can be written as a product of at most n matrices M and n matrices
M ′. If M is given as a straight-line program of length L′, then M ′ can also be given as a straight-line
program of length L′. All matrices O(λ2k + 1) for k < n can be constructed with a straight-line program
of length 2L′+3n, any four orthogonal matrices need straight-line programs of lengths at most 2L′+7n,
and any element g needs a straight-line program of length at most 2L′ + 7(n+ 1). �

Remarks. The condition on the eigenvalue is not very restrictive. It can be formulated equivalently as
“the eigenvalue does not belong to any subfield of F2n”. If M is chosen randomly among all the matrices
with eigenvector ( 1

1 ), the probability that the condition is satisfied is approximately 1− 2n
′−n where n′

is the largest non trivial divisor of n. In particular if n is prime, the condition can be formulated as “the
eigenvalue is neither 0 nor 1” or “M is not an orthogonal matrix”.

In cryptographic protocols, the factorization of the special matrix required in Proposition 11 could
be used as a trapdoor since its knowledge allows performing some computational task that remains
challenging today (despite the progress achieved in Section 4.2). However, we point out that this trapdoor
can easily be recovered from any factorization returned by the algorithm of Proposition 11. This unusual
property (not present in the RSA trapdoor one-way function [42]) would limit the practical use of the
trapdoor, although specific cryptographic protocols may precisely require it [7].

3.2 Towards a reduction to the Tillich-Zémor parameters

The factorization problem in SL(2,F2n) was solved in [35] for the Tillich-Zémor parameters. The following
proposition partly fills the gap between these parameters and the reductions of Section 2.

Proposition 12 Let G := SL(2,F2n) and let S := {M,O(w)} be a set of generators of G such that M
is a symmetric matrix. Let t := t(M) be the trace of M . Suppose that wt = 1 and that t has algebraic
degree n. Then the factorization problem for the generators S reduces to the factorization problem for
the Tillich-Zémor generators.

Proof: By Lemma 6, there exists w̃ ∈ F2n such that

T := ( t 1
1 0 ) = O(w̃)MO(w̃).

Let S1 :=
(
1 1
1 1+t

)
. We have

S−11 TS1 = T

and
S−11 O(w)S1 = ( 1 wt

0 1 ) .

Let S := O(w̃)S1. We have

S−1MS = S−11 O(w̃)MO(w̃)S1 = S−11 TS1 = T

and

T1 := S−1O(w)MS = S−1O(w)S · S−1MS = S−11 O(w̃)O(w)O(w̃)S1 · T
= S−11 O(w)S1 · T = ( 1 wt

0 1 ) ( t 1
1 0 ) =

(
t(w+1) 1

1 0

)
=
(
t+1 1
1 0

)
.

Finally, let
Z := TT1T

−1 =
(
t t+1
1 1

)
.

Let p be the minimal polynomial of t. By hypothesis, p has degree n. Representing the field F2n as

F2n ≈ F2[t]/(p(t)),

the matrices T and Z are exactly the Tillich-Zémor generators [45]. �
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Remark. Following [35], the factorization problem can be solved for the Tillich-Zémor parameters in time
O(n3), with factorizations of lengths bounded by 12n3 + 6n2 + 3n + 5. If n is prime, the algorithm is
deterministic and does not rely on any heuristic assumption [35].

4 New heuristic algorithms for factoring in SL(2, F2n)

In this section, we give two new heuristic algorithms for solving the factorization problem in G :=
SL(2,F2n). Interestingly, our algorithms are not restricted to a particular generator set like in [35].

4.1 A heuristic exponential time algorithm for polynomial length factorizations

Propositions 3 and 11 suggest the following algorithm. Given a generator set S for G and a matrix g ∈ G,

1. Find two short products Ã and B̃ of A and B such that ÃB̃ and B̃Ã generate SL(2,F2n). Replace S
by {Ã, B̃}.

2. Replace {Ã, B̃} by S̃ := {A,A′} and g by g̃ using Proposition 3.
3. Find a product M of A and A′ that satisfies the conditions of Proposition 11.
4. Apply Proposition 11 to find a factorization of g̃ as a product of A and A′.
5. Deduce a factorization of g for the generator set S.

Testing whether {ÃB̃, B̃Ã} generate SL(2,F2n) can be done in (Monte-Carlo) probabilistic polyno-
mial time [8]. For most generator sets {A,B}, the set {AB,BA} generates SL(2,F2n) and we can take
Ã = A and B̃ = B in Step 1. Otherwise, very short products will suffice. From the results of Sections 2
and 3, all steps but the third one can be carried out in probabilistic polynomial time. For the third step,
we suggest to combine a birthday search with distinguished points as in [37]. More precisely, we generate
about 2n/2 random products of A and A′ with a polynomial length L to be fixed later. For each product
Mi, we compute

( ai1
bi1

)
:= Mi ( 1

1 ) and
( ai2
bi2

)
:= M−1i ( 1

1 ). We store the factorizations of Mi together with
the projective points pi1 := [ai1 : bi1] and pi2 := [ai2 : bi2]. If pi1 = pi′2 and i 6= i′, we have

( 1
1 ) =

ai′2
ai1

Mi′Mi ( 1
1 )

hence ( 1
1 ) is an eigenvector of Mi′Mi. Moreover, I 6= Mi′Mi and the condition on the eigenvalue of

Mi′Mi hold with very large probability, larger than 1− 2n
′−n where n′ is the largest non trivial divisor

of n. Since a proportion of about 21−n matrices of G has ( 1
1 ) as eigenvector, random products of size

L = n/2 should be sufficient. The algorithm has an exponential time complexity 2n/2 times a “small”
polynomial in n. The storage needs can be reduced to a negligible quantity using distinguished points
techniques [39] as in [37].

We point out that a trivial birthday search in the group would have a complexity about 23n/2.
Moreover, our algorithm has two main advantages over the preimage algorithms of [37]. First, the use of
trapdoor matrices avoids solving a multiplicative knapsack problem. Second, the non-polynomial time
part can be achieved once and for all during a precomputing phase when many factorizations have to be
found for the same generator set.

Unfortunately, the complexity of the precomputing phase remains exponential in parameter n.

4.2 Trading time for space and factorization lengths

The previous algorithm factored one of the trapdoor matrices of Proposition 11. Instead, the algorithm of
this section reduces the factorization problem for an arbitrary generator set to the factorization problem
for the Tillich-Zémor generators. Proposition 12 suggests starting with a generator set containing a
symmetric matrix and at least one orthogonal matrix, then progressively modifying the trace of the
symmetric matrix to satisfy the condition wt = 1. In order to modify the trace in some controllable way,
we recursively use the following observation.

Lemma 13 Let M ∈ G be a symmetric matrix with trace t := t(M), let w ∈ F2n and let O := O(w).
Then the matrix MOM is a symmetric matrix with trace t2(w + 1).
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Proof: Let M :=
(
a b
b d

)
. We compute

MOM =
(

(a2+b2)(w+1) (a+b)(b+d)w+bt

(a+b)(b+d)w+bt (b2+d2)(w+1)

)
and t(MOM) = (a2 + d2)(w + 1) = t2(w + 1). �

Let S := {A,B} be a generator set for G := SL(2,F2n) and let g ∈ G. The factorization problem for
S and g can be solved as follows.

1. Find two short products Ã and B̃ of A and B such that

S̃ := {M} ∪ {O(wi)|wi ∈ F2n , i = 1, ..., n1}

generate SL(2,F2n), where M := An1
A′n1

and Ai, O(wi) are constructed by applying Proposition 3

and Lemma 8 to {Ã, B̃}. Let g̃ be as given by the proof of Proposition 3. (The parameter n1 will be
fixed below.)

2. Let t := t(M). Let n2 be a fixed integer. Find w(i) ∈< w1, ..., wn1
>+ such that

w(0)t
2n2

n2∏
i=1

(w(i) + 1)2
n2−i

= 1 (9)

(Parameter n2 will be fixed below.)
3. Applying Lemma 13 n2 times, deduce a trapdoor matrix that is a product M̃ of length 2n2+1 − 1 in

the elements of S̃, such that w(0)t(M̃) = 1. If the minimal polynomial of t(M̃) does not have degree
n, search for a new solution of Equation (9), if necessary after increasing n2.

4. Use Proposition 12 and the preimage algorithm for the Tillich-Zémor hash function [35] to compute
a factorization of g̃ as a product of the elements of S̃.

5. Deduce a factorization of g as a product of the elements of S.

The only “hard” part of this algorithm is to solve Equation (9), a particular form of a multiplicative
knapsack problem in F∗2n . When various group elements have to be factored with respect to the same
generator set, a solution of this equation can be precomputed to reduce the online time of our algorithm.

4.3 Solution to the multiplicative knapsack problem

We give a naive algorithm solving Equation (9), already sufficient to reduce the time complexity of the
factorization problem from more than 2n/2 to 2n/β logn for some constant β < 1. Our algorithm uses
Coppersmith’s version of the function field sieve algorithm [11,2] to solve discrete logarithms in the field
F∗2n and to reduce the multiplicative knapsack to a particular additive knapsack. For appropriately chosen
parameters n1 and n2, the additive knapsack is solved using Wagner’s generalized birthday approach [47].
We obtain the following algorithm:

1. Pick a random w(0) ∈< w1, ..., wn1
>+. Fix n2 > 2 and n1 :=

⌈
n

1+logn2

⌉
. Pick a random generator g

of F∗2n .
2. For every w ∈< w1, ..., wn1

>+, use Coppersmith’s algorithm [11] to find ew such that w + 1 = gew .
Also compute T such that gT = w(0)t

2n2
. Let E := {ew|w ∈< w1, ..., wn1

>+}.
3. Solve

n2∑
i=1

2n2−iei = −T mod (2n − 1), ei ∈ E (10)

using Wagner’s k-lists algorithm [47] with the k2 lists E1 := E,E2 := {2e|e ∈ E}, E3 := {4e|e ∈
E}, ..., En2

:= {2n2−1e|e ∈ E}.

We have n1n2 = nn2

1+logn2
> n so Equation (9) is expected to have at least one solution (and many

solutions for large values of n2). We now argue that the above algorithm likely computes a solution of

Equation (9), using memory n22n1 and time 2n1+cn
1/3(logn)2/3 , where c is a constant that can be approx-

imated by 1.58.
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The relation between n1 and n2 ensures that the lists in Step 3 are big enough to apply Wagner’s k-lists
algorithm [47]. This algorithm progressively solves Equation (10) up to log n2 blocks of n/ log n2 bits by
recursively merging couples of lists. The algorithm works if all the elements of all lists are independently
and uniformly distributed, an assumption taken by Wagner in his analysis. In practice, the algorithm
can often be used if all the lists are equal. It can even tolerate some dependencies between the elements
as long as the different blocks still appear uniformly distributed.

To obtain our asymptotic estimates, we take the heuristic assumption that Wagner’s algorithm be-
haves with the lists of Step 3 as it would behave on random lists. As the ei are the discrete logarithms
of the elements of some vector subspace, the assumption seems reasonable since the additive and multi-
plicative structures of finite fields are normally not correlated.

The complexity of our algorithm is therefore evaluated as follows. Wagner’s algorithm requires space
and time n22n1 . Coppersmith’s algorithm has time complexity

exp((c′ + o(1))n1/3(loge n)2/3)

where c′ is a constant and o(1) is an asymptotically vanishing function of n [11]. In our estimates, we
approximate c′ ≈ 1.4 [44] and we ignore the o(1) term. The memory requirements of Coppersmith’s
algorithm are negligible compared to the size of the lists in Wagner’s algorithm, whereas the total time
complexity of our algorithm is dominated by the computation of 2n1 discrete logarithms. The above
estimates follow.

Remark. At first sight, solving Equation (9) might not appear much harder than solving a discrete
logarithm problem in the unit group of the field F2n , a problem that can certainly be solved today when
we take n ≈ 160 as was suggested by Tillich and Zémor in their paper [45]. (The current record in 2010 is
a discrete logarithm computation in F∗2613 [17].) However, it turns out that the hardness of Equation (9)
comes less from its discrete logarithm component than from the special requirements of its (additive)
knapsack component.

Although knapsack problems are NP-hard in general, they have often been solved in practice using
the LLL algorithm [23,30,18]. Interestingly, some relaxations of Equation (10) can be solved this way.
For example, the problems

n2∑
i=1

aiei = −T mod (2n − 1), ei ∈ E, ai ∈ {0, 1, 2, 3, ..., 2n2 − 1}

or
n3∑
i=1

aiei = −T mod (2n − 1), ei ∈ E, ai ∈ {1, 2, 4, ..., 2n2−1}

for some n3 >> n2 can be solved by applying LLL on appropriately defined lattices, in a time approx-
imately 2n

α

for some 0 < α < 1 (much better than the complexity obtained above using Wagner’s
algorithm). However, the solutions of these relaxations only provide solutions to Equation (10) if they
additionally satisfy non-linear constraints between the ai. The efficient insertion of these non-linear con-
straints into a lattice problem might not be possible at all. We therefore used Wagner’s algorithm instead
of LLL.

We leave a more efficient algorithm for solving Equation (9) to further work and we come back to
our original problem.

4.4 Heuristic complexity bounds for factoring in SL(2,F2n)

We are now ready to give complexity estimates for the algorithm of Section 4.2.

As recalled in the remark after Proposition 12, the factorization algorithm of [35] returns factor-
izations of length about 12n3 for the Tillich-Zémor generators. From the proof of Proposition 12 and
the construction of the trapdoor matrix in our algorithm, each Tillich-Zémor matrix leads to a product
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containing exactly 2n2 matrices M as defined in Step 1 of our algorithm. The value L in Proposition 10
can therefore be approximated by 12n3 · 2n2 and the algorithm of this section returns factorizations of
length

2n2+33n1(n1 + 1)n3 + 6(n1 + 1)n ≈ 2n2+33n1n1n
3.

These factorizations can be returned in the compressed form of straight-line programs of length
bounded by

(n1 + 1)(6n1L− 6L+ 6n+ n1 + 1) ≈ 322n2+3n21n
3.

The time complexity has two main components. The knapsack resolution requires time 2n1+cn
1/3(logn)2/3 .

The reductions essentially take a time equal to the length of the straight-line programs needed to return
the factorizations. We can therefore bound the time complexity by

2n1+cn
1/3(logn)2/3 + 322n2+3n21n

3 ≤ 2 max(2n1+cn
1/3(logn)2/3 , 322n2+3n21n

3).

The memory complexity comes from Wagner’s k-lists algorithm. It can be approximated by

n22n1 .

Taking n2 = nα for some constant 0 < α < 1 and n1 =
⌈

n
1+logn2

⌉
as in Section 4.3, we obtain

subexponential time and memory algorithms producing factorizations of subexponential lengths for any
generator set of SL(2,F2n). We point out that despite the common “subexponential” qualification, the
complexity of our algorithm is worse than the complexity of state-of-the-art discrete logarithm or factor-
ing algorithms [2,11]. The “subexponential” complexity here essentially means 2

n
β logn for some 0 < β < 1

related to α.

To evaluate the hardness of the factorization problem in practice, we computed these bounds for
n ∈ {160, 256, 512, 1024} and various values of the parameter n2.
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We stress that the numbers obtained must be taken with some caution due to the various approxi-
mations involved in our complexity estimates. Nevertheless, they do give some insight on the practical
hardness of the problem. The results are shown in Figure 4.4 together with the n/2 bit complexity ob-
tained for the attack of Section 4.1. As expected, the time complexity advantage of our second algorithm
increases with n. For n = 160 (the parameter size suggested by Tillich and Zémor in their paper [45])
and n2 = 22, our second algorithm finds factorizations of length 299 in time 263 and memory 234. For
n = 1024 and n2 = 146, it finds factorizations of length 2385 in time 2200 and memory 2133. In crypto-
graphic applications, the time complexity advantage of our algorithm will have to be balanced with the
factorization lengths.

5 Conclusion

In this paper, we studied the hardness of the factorization problem in the group G = SL(2,F2n) for
generic generator sets. According to Babai’s conjecture, polylogarithmic length factorizations exist for
any element of G. Although the conjecture has now been proved for this group, all previous algorithms for
factoring in G either focused on particular generator sets, ran in time exponential or produced factoriza-
tions with exponential length in log |G|. In contrast, we argued that the heuristic algorithm of Section 4.2
requires subexponential time and memory and it produces subexponential lengths factorizations.

More importantly in our opinion, this paper introduces a series of new techniques that could ultimately
lead to a polynomial time algorithm producing polynomial length factorizations for any generator set of
SL(2,F2n). We suggested the following 3-step approach to tackle the problem:

1. Replace the generator set by another simpler one.
2. Identify a class of trapdoor matrices, such that factoring only one of these matrices would allow

factoring any matrix in the group.
3. Factor a trapdoor matrix.

We made important progress on the first two steps of this program in Sections 2 and 3. In particular,
we reduced the generator sets of interest to some classes containing 2n pairs of generators with a “nice”
special structure and we identified large classes of trapdoor matrices. Some of our reductions do not
work in all generality but only with a probability very close to 1 for large values of n. We leave the
rigorous treatment of all special cases to further work. Some reductions also rely on heuristic arguments.
In particular, the reductions of Section 2.3 rely on the ability to generate random elements of SL(2,F2n)
from short random products of a symmetric pair of generators.

The third and last step of our program is partially solved in Section 4. We argued that subexponential
length factorizations can asymptotically be computed in subexponential time using the algorithm of
Section 4.2. We believe that this result can be significantly improved, either by better solving Equation (9)
or by bridging the results of Steps 1 and 2 in a different way.

From a practical and cryptographic point of view, the algorithms of Section 4 do not really invalidate
the parameter size n ≈ 160 suggested by Tillich and Zémor [45]. However, they warn that the complexity
of the problem is lower than birthday searches when n increases. Moreover, we expect extensions of our
work to lead to even better and more practical attacks on Cayley hash functions. In particular, we believe
that a probabilistic polynomial time algorithm for Problem 1 exists and can be built on the results of
Sections 2 and 3.

Acknowledgements The author would like to thank Sylvie Baudine and the anonymous referees for their
help in improving the paper.
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