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Abstract. After 15 years of unsuccessful cryptanalysis attempts by the research com-
munity, Grassl et al. have recently broken the collision resistance property of the Tillich-
Zémor hash function. In this paper, we extend their cryptanalytic work and consider the
preimage resistance of the function.
We present two algorithms for computing preimages, each algorithm having its own advan-
tages in terms of speed and preimage lengths. We produce theoretical and experimental
evidence that both our algorithms are very efficient and succeed with a very large probabil-
ity on the function parameters. Furthermore, for an important subset of these parameters,
we provide a full proof that our second algorithm always succeeds in deterministic cubic
time.
Our attacks definitely break the Tillich-Zémor hash function and show that it is not even
one-way. Nevertheless, we point out that other hash functions based on a similar design
may still be secure.

1 Introduction

The Tillich-Zémor hash function was one of the oldest unbroken cryptographic hash functions in
the literature. It was proposed at CRYPTO’94, following the cryptanalysis of a related scheme
of Zémor [15,16,14,12]. It received significant cryptanalytic attention over the years [3,5,1,11,10]
but although closely related schemes had been completely broken [2,13,9], it remained essentially
intact during 15 years.

In August 2009, Grassl et al. introduced a new and very elegant algorithm finding collisions
for the Tillich-Zémor hash function [6]. The authors discovered a particular structure in the
hash values of palindromic messages (messages such that their bitstring representation can be
reversed without changing) and exploited their finding with a nice result of Mesirov and Sweet [8]
on the Euclidean algorithm applied to polynomials in characteristic 2.

In this paper, we extend the work of Grassl et al. to the problem of finding preimages
for the Tillich-Zémor hash function. We first show that a tiny modification of their algorithm
actually provides a second preimage algorithm. Inspired by previous work on a similar hash
function [9], we then reduce the problem of finding preimages to any hash value to the problem
of precomputing preimages to a few hash values with certain characteristics. Finally, we provide
two algorithms for this precomputing part.

Both our precomputing algorithms are very efficient and successful for random choices of the
function parameters. Each algorithm has its own advantages resulting from different approaches.
The first algorithm produces shorter preimages than the second one and it is therefore more
interesting from a practical point of view. On the other hand, the second algorithm is deter-
ministic and it is faster than the first one. It is also more interesting from a theoretical point of
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view since we have a proof that it always succeeds in deterministic cubic time for an important
subset of the function parameters.

The remainder of this paper is organized as follows. In Section 2 we introduce our notations,
the Tillich-Zémor hash function, the essential of Grassl et al.’s algorithm, and we briefly sketch
out our algorithms. In Section 3, we modify Grassl et al.’s algorithm into a second preimage
algorithm. In Section 4, we reduce the preimage problem to a precomputation part. In Sections 5
and 6 we give our two precomputation algorithms. We conclude the paper in Section 7 with
a discussion of our results and the security of Tillich-Zémor-like hash functions. Finally, we
illustrate our algorithms with a toy example in Appendix A.

2 Preliminaries

2.1 The Tillich-Zémor hash function

Let n be a positive integer and let p(X) be an irreducible polynomial of degree n over the field
F2. Let A0 and A1 be the following two matrices

A0 :=
(
X 1
1 0

)
and A1 :=

(
X X + 1
1 1

)
that have determinant 1. We call these matrices the generators of the Tillich-Zémor hash func-
tion. Let m = m1m2...mk ∈ {0, 1}∗ be the bitstring representation of a message. The Tillich-
Zémor hash value of m is defined as

H(m1m2...mk) := Am1Am2 ...Amk mod p(X).

2.2 Notations

Let K := F2[X]/(P (X)) ≈ F2n . The images of the Tillich-Zémor hash functions are the matrices
of the group SL(2,K), that is the group of matrices with elements in K and determinant 1. Let

h(m1...mk) := Am1Am2 ...Amk

be the Tillich-Zémor hash function without modular reduction. Its images are elements of
SL(2,F2[X]). In this paper, we sometimes identify the elements of K to their unique repre-
sentatives of degree smaller than n in F2[X]. To remove any ambiguity when it may appear,
we use the symbol = to mean an equality over F2[X] and ≡ to mean an equality over K.
For q(X) ∈ F2[X], we write qi for the coefficient of the term of degree i of q(X). Finally, if
m,m′ ∈ {0, 1}∗ are two bitstrings, we write mm′ for their concatenation.

2.3 Grassl et al.’s collision algorithm

Grassl et al. [6] first observed that two messages collide for the Tillich-Zémor hash function if
and only if they collide for the following modified function

H ′(m1...mk) := A′m1
A′m2

...A′mk mod p(X)

where

A′0 := A0 =
(
X 1
1 0

)
and A′1 := A−1

0 A1A0 =
(
X + 1 1

1 0

)
.

Grassl et al. then observed the following property of palindromic messages. Let h′ be the
modified Tillich-Zémor hash function without reduction.



Proposition 1 [6] Let m ∈ {0, 1}2k be a palindrome of even length, say m = mk...m1m1...mk.
Let a(0), ..., a(k) be the following polynomials

a(i) =

1, if i = 0;
X +m1 + 1, if i = 1;
(X +mi)a(i−1) + a(i−2), if 1 < i ≤ k.

Then h′(m) =
(
a2 b
b d2

)
for a = a(k), d = a(k−1) and some b ∈ F2[X]. Moreover, h′(0m0) +

h′(1m1) =
(
a2 a2

a2 0

)
.

From Proposition 1, we see that the square roots of the upper left entries of h′(m1m1),
h′(m2m1m1m2), h′(m3m2m1m1m2m3), etc. satisfy a Euclidean algorithm sequence (in reverse
order) where each quotient is either X or X + 1. Those sequences are often called maximal
length sequences for the Euclidean algorithm or maximal length Euclidean sequences, and they
have long been a topic of interest in number theory. Mesirov and Sweet [8] showed that, when
a ∈ F2[X] is irreducible, there exist exactly two polynomials d such that a, d are the first terms
of a maximal length Euclidean sequence. They also provide an algorithm to compute them,
which we will give below.

In their collision algorithm, Grassl et al. apply Mesirov and Sweet’s algorithm to the irre-
ducible polynomial a = p(X) in order to recover d. The corresponding bit sequence m1...mn can
be recovered by applying the Euclidean algorithm to a and d. By Proposition 1, we have

h′(0mn...m1m1...mn0) = h′(1mn...m1m1...mn1) +
(
a2 a2

a2 0

)
hence

H ′(0mn...m1m1...mn0) ≡ H ′(1mn...m1m1...mn1).

2.4 Maximal length sequences in the Euclidean algorithm in F2[X]

The Mesirov and Sweet’s algorithm, as described by Grassl et al., is the following one. To find
a maximal length Euclidean sequence starting from a given polynomial a(X) of degree k,

1. Construct a matrix A ∈ F(k+1)×k
2 from the k + 1 polynomials

g0 = 1,
gi = Xi−1 +X2i−1 +X2i mod a(X), for i = 1, 2, ..., k,

placing in the ith row of A the coefficients gi,0, gi,1, ..., gi,k−1 of the polynomial gi(X) =
gi,0 + gi,1X + ...+ gi,k−1X

k−1.
2. Solve the linear system Aut = (1, 0, ..., 0, 1)t where u = (u1, ..., uk).
3. Compute d(X) by multiplying a(X) by

∑k
i=1 uiX

−i and taking only the non-negative pow-
ers.

Mesirov and Sweet showed in [8] that polynomials d such that a, d are the first terms of a
maximal length sequence for the Euclidean algorithm, are in one-to-one correspondence with the
solutions of the equation Aut = (1, 0, ..., 0, 1)t. Moreover, they proved that when a is irreducible,
this equation has exactly two solutions.

Maximal length Euclidean sequences are closely connected to the matrices A′0 and A′1. If mi

and a(i) are as in Proposition 1, we have

( a(1) a(0) ) = ( 1 0 )
(
X+1+m1 1

1 0

)
= ( 1 0 )A′m1



(where m1 := 1−m1) and for 1 < i ≤ k we have

( a(i) a(i−1) ) = ( a(i−1) a(i−2) )
(
X+mi 1

1 0

)
= ( a(i−1) a(i−2) )A′mi .

Therefore, the first row of any product of A′0 and A′1 is the beginning of a maximal length
Euclidean sequence. By induction, we have

( a(k) a(k−1) ) = ( 1 0 )h′(m1m2...mk). (1)

2.5 Ideas behind our algorithms

Before going into the details of our algorithms, we provide some intuition behind them. Let m
be the palindromic message used in Grassl et al.’s collision attack. In Section 3, we first observe
that the hash values of m0 and 0m have the form L := ( 1 0

α 1 ) and U := ( 1 α
0 1 ) for some α ∈ F2n .

Since L and U have order 2, we obtain an algorithm finding preimages to the identity matrix,
hence a second preimage algorithm for the Tillich-Zémor hash function.

We then observe that the set of matrices L := {Lα := ( 1 0
α 1 ) , α ∈ K} forms an Abelian

subgroup of SL(2,K) that is isomorphic to the additive group (K,+). Finding n matrices Lαi
(together with their preimages) such that the set {αi, i = 1, ..., n} is a basis of K over F2,
therefore suffices to generate the whole subgroup L. The same holds for the set U := {Uα :=
( 1 α

0 1 ) , α ∈ K}. Moreover, inspired by previous work on a similar function [9], we prove in
Proposition 3 that any matrix of SL(2,K) can be written as a small product of A0 and matrices
of the sets L and U . At this point, it remains to obtain n matrices Lαi and Uαi generating L
and U . We solve this problem in two different ways and obtain two algorithms, each of them
having its own advantages but both of them being very efficient and successful.

As observed above, Grassl et al.’s paper indirectly provides one matrix L ∈ L after applying
Mesirov and Sweet’s algorithm to a = p. In our first precomputing algorithm, we obtain n
different matrices after applying Mesirov and Sweet’s algorithm to ai = pp′i, where p′i are
randomly-chosen small degree polynomials. This idea is quite simple but proving its correctness
requires solving two issues. First, Mesirov and Sweet only guarantee the success of their algorithm
when applied to an irreducible polynomial. Second, the αi values obtained by this way should
not be restricted to any vectorial subspace of K. In this paper, we extend Mesirov and Sweet’s
result in Proposition 5 and then argue on the correctness of our algorithm.

In our second precomputing algorithm, we follow a different approach and obtain n matrices
recursively from the first one. In particular, we exhibit a sequence of messages with increasing
lengths hashing to matrices of the required form, such that the corresponding values αi satisfy
a very simple recurrence. By studying the elements of this recurrence, we identify a subset
I ⊂ {1, ..., 2n} such that the corresponding matrices {Lαi , i ∈ I} generate the whole subgroup
when n is prime. This important result is proved through Lemma 6, Lemma 7 and Proposition 9.
Matrices {Uαi , i ∈ I} and their preimages are recovered at the same time.

Due to the way it constructs matrices Lαi and Uαi , our second precomputing algorithm
produces larger preimages than the first one. On the other hand, it is deterministic, faster than
the first one, and it is guaranteed to always succeed when parameter n is prime.

3 Second preimages for Tillich-Zémor hash function

The following proposition constructs collisions with the void message from the palindromic
messages used in Grassl et al.’s attack.

Proposition 2 Let
(
a2 b
b d2

)
= H ′(m) with a ≡ 0 be the modified Tillich-Zémor hash value of

some message m ∈ {0, 1}∗. Then

H(0m0m) = H(1m1m) = H(m0m0) = H(m1m1) = I = H().



Proof: We have 1 = det(h′(m)) = a2d2 + b2 ≡ b2 hence b ≡ 1. By a straightforward
computation, we have H ′(0m) =

(
1 X+d2

0 1

)
, H ′(m0) =

(
1 0

X+d2 1

)
, H ′(1m) =

(
1 X+1+d2

0 1

)
,

H ′(m1) =
(

1 0
X+1+d2 1

)
, and all these matrices have order 2. Finally, we observe that for any

m̃ ∈ {0, 1}∗ such that H ′(m̃) = I, we have H(m̃) = A0H
′(m̃)A−1

0 = A0A
−1
0 = I. �

The message m in Proposition 2 can be obtained by applying Mesirov and Sweet’s algorithm
to a = p(X) as in Grassl et al.’s attack (see Proposition 1). We therefore obtain a message m̃
colliding with the void message for the Tillich-Zémor hash function. A second preimage algorithm
is straightforwardly deduced, since for any m ∈ {0, 1}∗ we have H(mm̃) = H(m).

4 Preimage algorithm from a few precomputed preimages

For the remaining of the paper, we define Lα := ( 1 0
α 1 ) and Uβ :=

(
1 β
0 1

)
for any α, β ∈ K.

In [9], preimages for the LPS hash function (a function similar to Tillich-Zémor, with different
matrix generators) were computed by decomposing any matrix into a product of generators and
diagonal matrices, a subset of matrices for which computing preimages appeared to be easier.
In the case of Tillich-Zémor, the proof of Proposition 2 suggests the following decomposition.

Proposition 3 Given a preimage of length at most L for every matrix among a set S =
{Lαi , Uβi , i = 1, ..., n} where {αi, i = 1, ..., n} and {βi, i = 1, ..., n} are two basis of K as a
vector space over F2, there is a deterministic algorithm computing preimages of length at most
3nL+ 5 for the Tillich-Zémor hash function, in time O(n3).

Proof: We first observe that it is sufficient to have an algorithm with the same characteristics
for the modified Tillich-Zémor hash function. Indeed, for any A,B,C,D with AD +BC = 1,

H(m) = (A B
C D )⇔ H ′(m) = A−1

0 (A B
C D )A0.

Now, suppose we are given M = (A B
C D ) with det(M) = 1 and we want to find a preimage of

M for the modified Tillich-Zémor function. If B 6= 0, it is easily checked that(
A B
C D

)
=
(

1 0
α 1

)(
X 1
1 0

)(
1 β
0 1

)(
X 1
1 0

)3( 1 0
γ 1

)
with α = (DX +X +B)/(XB)

β = (B +X3)/X2

γ = (X +B +X2B +AX)/(XB)

while if B = 0, we have (
A 0
C D

)
=
(
X 1
1 0

)(
C D

A+ CX DX

)
and D 6= 0, so we may apply the above decomposition to the last matrix.

Since {αi, i = 1, ..., n} and {βi, i = 1, ..., n} are two basis of K, we may write α =
∑
i∈Iα αi,

β =
∑
i∈Iβ βi and γ =

∑
i∈Iγ αi, for some Iα, Iβ , Iγ ⊂ {1, ..., n}. Moreover, those decompositions

can be recovered in time O(n3) by solving three corresponding linear systems over F2. Finally,
we observe that for any I ⊂ {1, ..., n}, we have(

1 0∑
i∈I αi 1

)
=
∏
i∈I

(
1 0
αi 1

)
and

(
1
∑
i∈I βi

0 1

)
=
∏
i∈I

(
1 βi
0 1

)
.

Putting together what we have seen so far, we obtain a decomposition of any matrix into at
most 5 matrices A′0 and 3n matrices from the set S. A preimage is obtained by concatenating



the preimages of the corresponding matrices, and the maximal length of this preimage follows. �

Let µL, µU : {0, 1}∗ → {0, 1}∗ be two transformations on bitstrings defined as follows:

µL(m1m2...mk) = mk...m2m1m1m2...mk0;
µU (m1m2...mk) = 0mk...m2m1m1m2...mk.

Lemma 4 Let m ∈ {0, 1}∗ such that ( 1 0 )H ′(m) = ( 0 q ) for some q ∈ K. Then

H ′(µL(m)) =
(

1 0
X+q2 1

)
and H ′(µU (m)) =

(
1 X+q2

0 1

)
.

Proof: Let m = m1...mk be the bitwise representation of m. According to Equation 1 and
Proposition 1 we have H ′(mk...m2m̄1m̄1m2...mk) =

(
0 b
b q2

)
. Moreover b = 1 since the determi-

nant of any hash value is 1. Multiplying left and right by A0 we obtain the result. �

Proposition 3 reduces the preimage problem to the problem of precomputing the preimages
of some set of matrices. Lemma 4 further reduces the precomputation to find n messages mi, i =
1, ..., n such that

( 1 0 )H ′(mi) = ( 0 qi ) for some qi ∈ K (2)

and {q2i +X mod p, i = 1, ..., n} is a basis of K. In Sections 5 and 6, we give two algorithms for
finding these messages.

5 First precomputing algorithm

As observed in Section 3, we can obtain one message satisfying Equation 2 by applying Mesirov
and Sweet’s algorithm to a = p. In order to obtain more messages satisfying the equation, a
natural idea is to apply the algorithm to a small multiple of p. This leads us to the following
algorithm.

1. Take R large enough.
2. Construct a set T = {αi, i = 1, ..., n} containing elements of K that are linearly independent

over F2, as well as preimages to Lαi and Uαi . To this aim, start from an empty set T , then
until the set contains n elements:
(a) Generate a random irreducible polynomial p′ of degree R.
(b) Construct a matrix A by applying the first step of Mesirov and Sweet’s algorithm to

a = pp′.
(c) If Aut = (1, 0, ..., 0, 1)t has solutions, compute α := d2 + X where d is obtained by

completing Mesirov and Sweet’s algorithm.
(d) Check whether α is independent of the elements of T ; if it is, add it to the list and

compute the corresponding preimages.

The algorithm is conceptually simple but it is not a trivial task to prove its correctness. First,
Mesirov and Sweet only guarantee the success of their algorithm for irreducible polynomials while
in Step 2(b) we apply it to a more general polynomial. Second, the above algorithm succeeds
only if it is possible to generate n independent αi values in Step 2(d). This last condition
seems particularly hard to prove given our current understanding of maximal length Euclidean
sequences in F2n .

In Section 5.1 below, we extend Mesirov and Sweet’s result and argue that in Step 2(c) of
our algorithm, the system Aut = (1, 0, ..., 0, 1)t has solutions with a probability ρ at least 1/2
on average. In Section 5.2, we provide intuitive arguments and experimental evidence showing
that if R is O(log n), the loop of Step 2 must only be repeated O(n) times. Since each loop



requires solving at most two linear systems of size n, we expect the whole algorithm to run in
probabilistic O(n4) time.

All the messages constructed by this algorithm have length exactly R + n. These messages
can be used in Lemma 4 and Proposition 3 to compute preimages of length O(n2 +nR) ≈ O(n2)
for any matrix.

5.1 Mesirov and Sweet’s algorithm for a = pp′

In this section, we argue that for a parameter p chosen at random, the probability that Aut =
(1, 0, ..., 0, 1)t has solutions in Step 2(c) of our algorithm is ρ ≈ 1/2. Let us consider the arithmetic
sequence

1 + p+ `X(X + 1)p, ` ∈ F2[X], deg(`) ≤ R− 1.

For any ` ∈ F2[X], let N(`) be the number of distinct irreducible polynomials of degree R in the
factorization of 1 + p+ `X(X + 1)p. Let N0 :=

∑
deg(`)≤R−2N(`) and N1 :=

∑
deg(`)=R−1N(`).

Although a priori there may exist some R and p such that N0 ≈ 0, for most values R and
random polynomials p it seems reasonable to expect N0 ≈ N1. In the following, we show that
the probability that Aut = (1, 0, ..., 0, 1)t has solutions is at least N0

N0+N1
, hence for a parameter

p chosen at random we expect to have ρ at least equal to 1/2.

By simple linear algebra the system Aut = (1, 0, ..., 0, 1)t has solutions if both 1) the first
row of A is a linear combination of its last row and some other rows and 2) the last row of A is
not a linear combination of its middle rows. In other terms,

1. There exists v = (v0, ..., vn+R) ∈ F(n+R+1)×1
2 such that vA = 0 and v0 = vn+R = 1.

2. For any w = (w0, ..., wn+R) ∈ F(n+R+1)×1
2 such that wA = 0 and w0 = 0, we have wn+R = 0.

Following Mesirov and Sweet [8], let us consider the following equations in the (polynomial)
variables r(X) and s(X):

r(X) +Xr(X)2 +X2r(X)2 = 1 mod a(X), (3)
s(X) +Xs(X)2 +X2s(X)2 = 0 mod a(X). (4)

Remembering the definition of A, we see that Aut = (1, 0, ..., 0, 1)t has solutions if

1. For some r(X) = rn+R−1X
n+R−1+...+r1X+r0 solution to Equation 3, we have rn+R−1 = 1.

2. For any s(X) = sn+R−1X
n+R−1+...+s1X+s0 solution to Equation 4, we have sn+R−1 = 0.

Since X does not divide a = pp′, it must divide a + 1. The polynomial (a + 1)/X has degree
n + R − 1 and is a solution to Equation 3; it therefore satisfies the first condition. Equation 4
has four solutions s00, s01, s10 and s11 characterized as follows:{

s00 = 0 mod p,
s00 = 0 mod p′;

{
s10 = 0 mod p,
1 +X(X + 1)s10 = 0 mod p′;{

1 +X(X + 1)s01 = 0 mod p,
s01 = 0 mod p′;

{
1 +X(X + 1)s11 = 0 mod p,
1 +X(X + 1)s11 = 0 mod p′.

Clearly, s00 = 0 mod a. Since X+1 does not divide a = pp′, it must divide a+1. The polynomial
(a+ 1)/X(X + 1) has degree n+R− 2 and is a solution to Equation 4. Reducing it modulo p
and p′, we see that (a+ 1)/X(X + 1) = s11. As Equation 4 is homogeneous, its solutions form a
vector space, hence s01 = s10 + s11. Since the coefficient n+R− 1 of s11 is zero, the coefficient
N +R− 1 of s01 and s10 are equal. Using Chinese Remainder Theorem, we have

s10 =
[
(X(X + 1)p′)−1 mod p

]
p′



hence the coefficient N +R−1 of s10 is equal to the coefficient N −1 of (X(X + 1)p′)−1 mod p.
We have proved the following proposition that extends Mesirov and Sweet’s result on irreducible
polynomials to polynomials with two distinct nonlinear irreducible factors:

Proposition 5 Let p, p′ be nonlinear irreducible polynomials and let a = pp′. If

deg
(

[X(X + 1)p′]−1 mod p
)
≤ deg(p)− 2.

then the corresponding Mesirov and Sweet system Aut = (1, 0, ..., 0, 1)t has solutions.

Let y := [X(X + 1)p′]−1 mod p. By definition, we have

yX(X + 1)p′ = 1 + kp

for some unique k ∈ F2[X]. As deg(y) ≤ N − 1, we have deg(k) ≤ R + 1. We easily see that
X(X+1) divides 1+kp if and only if k = 1+X(X+1)` for some ` ∈ F2[X] with deg(`) ≤ R−1.
Therefore for any p′ (randomly generated in our algorithm), there exists exactly one polynomial
` with deg(`) ≤ R− 1 such that

yX(X + 1)p′ = 1 + p+X(X + 1)`p.

If ` 6= 0, then by Proposition 5, the system Aut = (1, 0, ..., 0, 1)t has solutions if deg(`) =
deg(y) + R − deg(p) ≤ R − 2. For ` = 0 we have deg(y) = deg(p) − 2 − R which satisfies
the condition of Proposition 5. Defining N0 and N1 as above, N0 (respectively N1) is precisely
the number of irreducible polynomials p′ of degree R such that the corresponding polynomial `
satisfies deg(`) ≤ R− 2 (respectively deg(`) = R− 1). We finally obtain ρ ≥ N0

N0+N1
.

Remark. It is possible to remove the irreducibility condition on p′ in Step 2(a) of our algorithm.
However, the probability that Mesirov and Sweet system Aut = (1, 0, ..., 0, 1)t has solutions in
Step 2(c) is maximal when p′ is irreducible, as can be seen by further extending Proposition 5.

5.2 Correctness of the algorithm

Even after finding many different α values in Step 2(c), our algorithm could still fail if all these
values belonged to a vector subspace of K. However, the algorithm will always succeed if the
following hypothesis holds.

Hypothesis 1 The polynomials d resulting from applying the Mesirov and Sweet’s algorithm
to a = pp′ (with p and p′ irreducible, p fixed and p′ random), form a set without any particular
structure. In particular, this set can be thought of as a random set of polynomials of degree
n+R− 1.

If each d value constructed can be considered as a random polynomial of degree n+R − 1,
then the corresponding value α := d2 + X mod p can be considered as a random polynomial
of degree at most n − 1. In that case, every new value α is (very) likely to be independent
from the previous one: if there are already i independent elements in T , the new value will be
independent from the previous ones with a probability 1− 2i−n. After generating a little more
than n polynomials d, our algorithm will be likely to succeed in finding n linearly independent
α values. By the analogue of the prime number theorem for irreducible polynomials over a
finite field, the number of irreducible polynomials p′ of degree R is roughly 2R/R. By our
analysis in Section 5.1, the Mesirov and Sweet’s system has solutions for at least one half of the
corresponding polynomials a = pp′. Therefore, we must have

2R

R
≥ 2n. (5)



Assuming Hypothesis 1 is correct, taking a value O(log n) for R in Step 1 should be sufficient
to guarantee the success of our algorithm.

Hypothesis 1 seems very likely to hold. Of course, there is a strong relationship between two
polynomials a and d such that all their partial quotients are X or X + 1. However, this relation
does not seem to restrict d to any vector subspace of K, even if a is only chosen among the
multiples of p. Today, the “simplest” relation known to hold between two consecutive terms of
a maximal length Euclidean sequence is precisely given by the Mesirov and Sweet’s algorithm,
and it does not seem to impose such a restriction.

A theoretical analysis of our algorithm based on firmer grounds than Hypothesis 1 would
be very valuable, but given current understanding of maximal length Euclidean sequences in
F2n , we believe that it is far from reach. To prove the efficiency of our algorithm, we therefore
complete our arguments with experimental results. In our experiments, we took p the shortest
irreducible polynomial of degree n, that is the polynomial p = Xn + ...+ p0 for which

∑
pi2i is

minimal. For some values of n between 5 and 2039, we tried different values of R until we found
one that was large enough. The results are given in Figure 1.

n R n R n R

5 5 67 11 257 13
7 7 73 11 277 13
11 8 83 11 307 13
13 9 97 11 331 14
17 9 103 12 353 14
19 9 109 12 379 14
23 9 127 12 401 14
29 9 137 12 449 14
31 10 149 12 499 14
37 10 167 13 607 15
41 10 191 13 1021 15
47 10 211 13 2039 16
59 11 233 13
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Fig. 1. Minimal value R for different values n and the “shortest” polynomials of degree n. The points

on the staircase-like curve are experimental results. The other curves are n = 2R

cR
for c = 1, 2, 3, 4, 5, 6.

The algorithm always succeeded with a value R satisfying

2R

R
≥ 5n,

that is slightly larger than predicted by Equation 5 but still consistent with the expected R =
O(log n). When n ≥ 17, it always succeeded as long as 2R

R ≥ 4n. The last points of Figure 1
for n = 1021 and n = 2039 are very close to the bound of Equation 5. The results confirm
the analysis performed in this section and in the previous one. In Appendix B, we describe
additional experiments performed on randomly chosen polynomials. All the results obtained are
also consistent with our analysis.



6 Second precomputing algorithm

Our first precomputing algorithm is very efficient both in theory and in practice, but its cor-
rectness must likely rely on some ad hoc hypothesis. In this section, we provide an alternative
algorithm precomputing messages of length bounded by n2, resulting in preimages of length
O(n3) after applying Lemma 4 and Proposition 3. On the one hand this second algorithm is
worse than the first one since it produces larger preimages, but on the other hand it is de-
terministic and it runs in time O(n3), much faster than the first one. More importantly from
a theoretical point of view, we provide a proof that it always succeeds when n is prime, and
strong evidence that it has a very large probability of success when n is reasonably large and
the polynomial p is chosen at random.

The Mesirov and Sweet’s algorithm applied to p is guaranteed to succeed since p is irreducible.
It provides a polynomial q of degree n − 1 such that p and q are the first terms of a maximal
length Euclidean sequence. By Equation 1, we have ( p q ) = ( 1 0 )h′(m̃1) for some m̃1 ∈ {0, 1}n
that can be recovered with the Euclidean algorithm. For i > 1, let

m̃i := m̃i−10m̃1. (6)

We first show that the messages m̃i satisfy the requirements of Lemma 4.

Lemma 6 For any i ≥ 0, ( 1 0 )H ′(m̃i) ≡ ( 0 qi ).

Proof: For i = 1 the result is trivial. Moreover, assuming the property is satisfied for some i,
it is also satisfied for i+ 1 since

( 1 0 )H ′(m̃i+1) = ( 1 0 )H ′(m̃i)A′0H
′(m̃1)

≡ ( 0 qi ) (X 1
1 0 ) ( 0 q

... ... ) ≡ ( qi 0 ) ( 0 q
... ... ) ≡ ( 0 qi+1 ) . �

To apply Lemma 4 and Proposition 3, we must find a subset of {q2i +X mod p, i ≥ 1} that
is a basis of K. We start by studying the sets Sj := {q2(j+i) mod p, i = 1, ..., n}.

Lemma 7 If n is prime, then for any j ≥ 0, the set Sj := {q2(j+i) mod p, i = 1, ..., n} is a basis
of K over F2.

Proof: It suffices to show that each Sj is a free set of K. Let us assume by contradiction
that there exists (b1, ..., bn) ∈ Fn2 \ {(0, ..., 0)} such that 0 =

∑n
i=1 biq

2(j+i). Since q is a poly-
nomial of degree n − 1, q 6= 0, 1 hence q2 6= 0, 1. The degree of the minimal polynomial of q2

must divide n, hence if n is prime it is either 1 or n. Since q2 6= 0, 1 the minimal polynomial
degree has degree larger than 1 and hence it has degree n. Now, let us define the polynomial
f : y → f(y) =

∑n−1
i=0 bi−1y

i. We have deg(f) < n. We also have q2(j+1)f(q2) = 0 hence
f(q2) = 0. Therefore f must be a multiple of the minimal polynomial of q2, which brings us to
a contradiction. �

The proof of Lemma 7 does not work if n is not prime since the degree of the minimal
polynomial of q2 may then be a nontrivial divisor of n. However, even if n is not prime, Sj is a
basis for all j if and only if Sj is a basis for some j. If n1 is a divisor of n, the probability that a
random element of K has a minimal polynomial with degree dividing n1 is 2n1−n, that is very
small for reasonably large values of n (Tillich and Zémor suggested n > 130). Of course, q2 is
not a random element of K since q is one of the two polynomials making p and q the first terms
of a maximal length Euclidean sequence. However, the best link known today between p and q
is the Mesirov and Sweet’s algorithm, and when p is chosen at random this algorithm does not
seem to influence the degree of the minimal polynomial of q. We have confirmed this intuition



experimentally: for large n and random p, S0 was always a basis, while for very small values of
n like n = 4 it was not always (although most often) the case.1

Let Tj := {q2(i+j) +X mod p, i ≥ 1}. We now show that if S0 is a basis over K, then there
exists j ≤ n such that Tj is a basis of K. To this aim we first need the following lemma.

Lemma 8 Let {βi, i = 1, ..., n} be a basis of K over F2 and let ei ∈ F2, i = 1, ..., n be such that
X =

∑
i eiβi. Then {αi := βi +X, i = 1, ..., n} is a basis of K over F2 if and only if

∑
i ei = 0.

Proof: We can write X =
∑
i eiαi + (

∑
i ei)X. If

∑
i ei = 1, then 0 =

∑
i eiαi hence

{αi, i = 1, ..., n} is not a free set of elements. On the other hand, if
∑
i ei = 0 then X =

∑
i eiαi.

Let α ∈ K and let bi ∈ F2, i = 1, ..., n be such that α =
∑
i biβi. Let ai := bi + (

∑
i bi) ei. We

have α =
∑
i biαi + (

∑
i bi)X =

∑
i aiαi hence {αi, i = 1, ..., n} is a generating set. �

We are now ready to prove the following result.

Proposition 9 If S0 is a basis of K over F2 (in particular, if n is prime), then there exists
j < n such that Tj is a basis of K over F2.

Proof: We give a constructive proof of the result. Since S0 is a basis of K over F2, we know
that Sj is a basis of K over F2 for all j ≥ 0. Let ei ∈ F2, i = 1, ..., n such that X =

∑n
i=1 eiq

2i. If∑
i ei = 0, then according to Lemma 8 we are done with j = 0. Otherwise, let j be the smallest

index i such that ei = 1. Since q2 mod p belongs to K, the degree n′ of its minimal polynomial
p′ divides n. (This polynomial can be easily computed, but it is not needed by the algorithm.)
By definition, we have p′0 + p′1q

2 + ... + p′n−1q
2(n′−1) + q2n

′
= 0 mod p. Since p′ is irreducible,

we have p′0 = 1 (otherwise X|p′) and
∑n′

i=0 p
′
i = 1 (otherwise X + 1|p′). Let us define ei := 0 for

i > n and p′i := 0 for i > n′. We have

X ≡
n∑
i=1

eiq
2i ≡

n∑
i=1

eiq
2i + q2j

(
1 + p′1q

2 + ...+ p′n′−1q
2(n′−1) + q2n

′
)
≡

j+n∑
i=j+1

(ei + p′i−j)q
2i.

Moreover,
∑j+n
i=j+1(ei + p′i−j) = (1 +

∑n
i=1 ei) +

(
1 +

∑n′

i=0 p
′
i

)
= 0. Together with Lemma 8,

this shows that Tj is a basis of K over F2. �

In short, our second algorithm is as follows

1. Apply Mesirov and Sweet’s algorithm to p; get q and m̃1.
2. If n is not prime, check whether S0 = {q2, q4, ..., q2n} is a basis of K over F2. If it is not,

abort.
3. Decompose X in the basis S0.
4. Determine j as in the proof of Proposition 9.
5. Compute m̃j+1, ..., m̃j+n using Equation 6 and apply Lemma 4.

Step 1 and Step 3 both require solving a linear system of size n × n over F2 which can be
done in time O(n3); the remaining steps are comparatively fast. The length of m̃i is i(n+ 1)− 1
and we have i ≤ j + n and j < n. After application of the mappings µL and µU , we may apply
Proposition 3 with L = 4n2 + 2n + 1, resulting in preimages of length O(n3) for any matrix.
The algorithm is guaranteed to succeed if n is prime, and as argued above when n is composite
but reasonably large it will likely succeed with a very large probability.

1 The Tillich-Zémor hash function is a priori even weaker when n is not prime, due to the subgroup
structure of SL(2,K) [11].



7 Discussion

In this paper, we presented very efficient algorithms computing preimages for the Tillich-Zémor
hash function. We first gave a second preimage algorithm. Then we reduced the problem of
finding preimages for the Tillich-Zémor hash function to the problem of precomputing a few
preimages with certain properties. Subsequently, we gave two algorithms for the precomputing
part:

1. The first algorithm produces messages of length O(n), resulting in generic preimages of
length O(n2). We provided theoretical and experimental evidence that it runs in probabilistic
time O(n4) and succeeds with a very large probability on the function parameters.

2. The second algorithm produces messages of length O(n2), resulting in generic preimages of
length O(n3). We gave a proof that it always succeeds when n is prime, and arguments that
it succeeds for most polynomials p when n is not necessarily prime but is reasonably large.
The algorithm runs in deterministic time O(n3).

Since the size of SL(2,F2n) is about 23n, it seems reasonable to conjecture that preimages of
length 3n exist for any matrix. However, even if this conjecture is true, it is not clear whether
there exists an efficient algorithm computing preimages of this length. We leave that question
as an interesting open problem. From a practical point of view, our first algorithm is the most
interesting one since it produces shorter messages. On the other hand, the second algorithm
is more appealing from a theoretical point of view. In particular, it provides a constructive
proof that the Cayley graphs corresponding to the Tillich-Zémor hash function satisfy Babai’s
conjecture (that is, that they have a polylogarithmic diameter [7]), at least when we restrict n to
the prime values. Besides those important results, in the argumentation for our first algorithm
we provided an extension of Mesirov and Sweet’s result [8] and a connection to some arithmetic
sequence of polynomials, both of which are of independent interest.

Grassl et al.’s attack found collisions for the Tillich-Zémor hash function. In this paper, we
showed that the function is not even one-way. The attacks also break its vectorial and projective
variants [10]. Our work puts a final end to the story of the Tillich-Zémor hash function, one
of the oldest and most elegant hash functions in the literature. Similar hash functions that are
using the same design (replacing the group SL(2,K) and the generators A0, A1 by other groups
and generators) have also been cryptanalyzed recently [14,13,9].

Nevertheless, we point out that these particular attacks do not invalidate the generic design.
The key tool in the cryptanalysis of Tillich-Zémor hash function is Mesirov and Sweet’s algorithm
which is specific to quotients X and X + 1 in the Euclidean algorithm. At the current state of
knowledge, collision and preimage resistances are recovered if we replace the matrices A0 and A1

by B0 :=
(
X2 1
1 0

)
and B1 :=

(
X+1 1

1 0

)
. Moreover, since current attacks do not allow controlling

the form of the collisions and preimages, security might also be recovered by introducing some
simple redundancy in the messages. It might even be sufficient to replace A0 by A2

0 or A3
0.

More generally, similar hash functions can be constructed from other non-Abelian groups and
generators.

The generic design of the Tillich-Zémor hash function has many advantages over traditional
hash functions like SHA: it has inherent parallelism, potentially efficient implementations in a
wide range of contexts and a security equivalent to some concise mathematical problems [4]. For
these reasons, we do not recommend to give it up but on the contrary, we suggest the community
to look for secure and insecure instances. In the same way as many RSA instances can be insecure,
especially when they are optimized for efficiency, we believe that the particularly efficient Tillich-
Zémor hash function may be an unfortunately insecure instance of a more generally sound design.

Acknowledgements The authors would like to thank Gilles Zémor, Sylvie Baudine, François
Koeune and François-Xavier Standaert for their useful comments on this paper.
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A Can we also compute preimages? A toy example.

In this section, we provide toy examples of our algorithms. We use n = 11 and the “smallest”
irreducible polynomial of degree 11 which is p(X) = X11 +X2 + 1.

The representation of the sentence “Grassl et al. have shown how to find collisions. But can
we also compute preimages?” in ASCII is 47 72 61 73 73 6c 20 65 74 20 61 6c 2e 20 68 61 76 65
20 73 68 6f 77 6e 20 68 6f 77 20 74 6f 20 66 69 6e 64 20 63 6f 6c 6c 69 73 69 6f 6e 73 2e 20 42 75
74 20 63 61 6e 20 77 65 20 61 6c 73 6f 20 63 6f 6d 70 75 74 65 20 70 72 65 69 6d 61 67 65 73 3f
to which corresponds the message mtext =01000111 01110010 01100001 01110011 01110011 01101100 00100000 01100101

01110100 00100000 01100001 01101100 00101110 00100000 01101000 01100001 01110110 01100101 00100000 01110011 01101000 01101111

01110111 01101110 00100000 01101000 01101111 01110111 00100000 01110100 01101111 00100000 01100110 01101001 01101110 01100100

00100000 01100011 01101111 01101100 01101100 01101001 01110011 01101001 01101111 01101110 01110011 00101110 00100000 01000010

01110101 01110100 00100000 01100011 01100001 01101110 00100000 01110111 01100101 00100000 01100001 01101100 01110011 01101111



00100000 01100011 01101111 01101101 01110000 01110101 01110100 01100101 00100000 01110000 01110010 01100101 01101001 01101101

01100001 01100111 01100101 01110011 00111111.The Tillich-Zémor hash value of this message for polynomial
p(X) is

h =
(

X7+X5+X4+X2+1 X8+X2+X+1
X9+X8+X7+X5+X4+X3+X X9+X6+X5+X4+X2+X

)
.

We compute other preimages of this matrix using the algorithms of this paper.

We start with the second preimage algorithm of Section 3. The Mesirov and Sweet algorithm
applied to p gives d(X) = X10 + X8 + X7 + X6 + X5 + X2 + X + 1 and the message m =
01011000010. The message

m̃ = µL(m)µL(m) = [(101111001011)(11011000010)0][(101111001011)(11011000010)0]

is a preimage of the identity matrix, hence H(mtextm̃) = H(mtext) = h.

We now apply our preimage algorithms to h. We first change the generators and we look for
a preimage of

h′ =
(

X10+X8+X X9+X8+X7+X5+X4+X3+X
X9+X6+X5+X3+X2 X10+Xy+X8+X7+X6+1

)

for the modified Tillich-Zémor hash function. We first write

(
A B
C D

)
=
(

1 0
α 1

)(
X 1
1 0

)(
1 β
0 1

)(
X 1
1 0

)3( 1 0
γ 1

)

with

α = X10 +X9 +X8 +X7 +X6 +X5 +X4 + 1
β = X10 +X7 +X6 +X5 +X3 +X2 +X
γ = X8 +X4 + 1

.

Now, we illustrate our first precomputing algorithm. We take R = 10 and generate random
polynomials p′ of degree R. We apply Mesirov and Sweet’s algorithm to a = pp′. If successful, we
obtain a d value and compute the corresponding α value. If this α value is linearly independent
(over F2n/F2) with the previous values, we keep it and computem such that ( a d ) = ( 1 0 )H ′(m).
The following table summarizes the results obtained.



p′ d α ⊥? m
X10 + X9 + X8 + X7 + X6 + X5 +
X4 +X3 + 1

X20+X19+X15+X14+X13+X11+
X10 +X9 +X5 +X4 +X

X8 +X7 +X6 +X5 +X4 +X3 +X2 yes m1 =001101001000100100100

X10 +X6 +X5 +X3 +X2 +X + 1 - - - -
X10 + X9 + X7 + X6 + X5 + X4 +
X3 +X2 + 1

X20+X18+X16+X15+X14+X12+
X9 +X7 +X5 +X3 +X

X10+X9+X8+X7+X6+X5+X4+1 yes m2 =101111101001011101100

X10 +X9 +X5 +X4 +X2 +X + 1 X20 +X19 +X18 +X15 +X6 +X5 +
X3 +X2 +X + 1

X10+X9+X8+X7+X6+X3+X+1 yes m3 =010010111110101111100

X10 +X9 +X7 +X5 +X2 +X + 1 - - - -
X10 +X9 +X8 +X5 + 1 X20+X19+X17+X16+X14+X13+

X9 +X6 +X5 +X4 +X2 + 1
X10 + X9 + X6 + X5 + X4 + X3 +
X2 +X + 1

yes m4 =001010011110111001001

X10 +X9 +X5 +X + 1 - - - -
X10 +X9 +X8 +X6 +X4 +X3 + 1 - - - -
X10 +X7 +X5 +X3 +X2 +X + 1 - - - -
X10 +X8 +X4 +X3 + 1 - - - -
X10 +X9 +X8 +X4 + 1 - - - -
X10 +X8 +X3 +X2 + 1 X20 +X17 +X14 +X10 +X8 +X7 +

X3 +X + 1
X10 +X7 +X5 +X4 + 1 yes m5 =010111010111101011110

X10 +X9 +X7 +X5 +X2 +X + 1 - - - -
X10 +X4 +X3 +X2 + 1 - - - -
X10 + X9 + X8 + X6 + X5 + X4 +
X3 +X2 + 1

X20 +X15 +X13 +X10 +X9 +X8 +
X7 +X5 +X3 +X

X10 +X9 +X7 +X6 yes m6 =100101101001110010110

X10 +X7 +X6 +X2 + 1 - - - -
X10 +X8 +X4 +X3 + 1 - - - -
X10 +X7 + 1 X20+X18+X16+X14+X12+X11+

X10 +X7 +X3 +X2 + 1
X9 +X6 +X5 +X4 +X3 +X yes m7 =010010001011100010001

X10 + X9 + X7 + X5 + X4 + X3 +
X2 +X + 1

- - - -

X10 +X8 +X3 +X2 + 1 X20 +X17 +X14 +X10 +X8 +X7 +
X3 +X + 1

X10 +X7 +X5 +X4 + 1 no

X10 +X6 +X5 +X3 +X2 +X + 1 - - - -
X10 +X8 +X5 +X + 1 X20+X19+X18+X17+X16+X14+

X11 +X10 +X8 +X4 +X

X8 +X7 +X6 +X5 +X3 +X2 yes m8 =111110110010101111001

X10 +X7 +X4 +X3 + 1 - - - -
X10 + X9 + X7 + X5 + X4 + X3 +
X2 +X + 1

- - - -

X10 +X9 +X8 +X7 + 1 X20+X17+X15+X14+X13+X12+
X9 +X8 +X7 +X5 +X4 +X2 + 1

X8 +X5 +X4 +X3 +X2 +X yes m9 =100001010010010001001

X10 +X9 +X8 +X5 +X4 +X2 + 1 - - - -
X10 +X9 +X7 +X6 +X4 +X + 1 X20 +X18 +X16 +X11 +X9 +X8 +

X5 +X4 +X + 1
X9 +X8 +X5 +X2 +X + 1 yes m10 =101000011111000001010

X10 + X9 + X8 + X6 + X5 + X4 +
X3 +X2 + 1

X20 +X15 +X13 +X10 +X9 +X8 +
X7 +X5 +X3 +X

X10 +X9 +X7 +X6 no

X10 +X7 +X6 +X4 +X2 +X + 1 - - - -
X10 +X7 +X6 +X5 +X2 +X + 1 - - - -
X10 +X9 +X8 +X6 +X2 +X + 1 - - - -
X10 +X9 +X8 +X7 + 1 X20+X17+X15+X14+X13+X12+

X9 +X8 +X7 +X5 +X4 +X2 + 1
X8 +X5 +X4 +X3 +X2 +X no

X10 +X7 +X6 +X5 +X2 +X + 1 - - - -
X10 +X9 +X8 +X7 +X6 +X2 + 1 - - - -
X10 +X8 +X7 +X3 +X2 +X + 1 X20+X17+X16+X15+X14+X13+

X11 +X10 +X9 +X7 +X

X9 +X7 +X6 +X5 +X4 +X + 1 yes m11 =000011011010111000101

Writing α, β, γ in the basis obtained, we get α = α2, β = α2 + α8 + α11 and γ = α1 + α2 +
α3 + α4 + α5 + α9 + α10. Finally we obtain one preimage of h as

m′ = mα0mβ000mγ

where

mα = µL(m2),
mβ = µU (m2)µU (m8)µU (m11),
mγ = µL(m1)µL(m2)µL(m3)µL(m4)µL(m5)µL(m9)µL(m10).

(Note that the terms composing mβ and mγ can be permuted arbitrarily.)

Finally, we use our second precomputing algorithm to find yet another preimage. Let m̃1 =
01011000010 be the message obtained by applying Mesirov and Sweet’s algorithm to a = p. The
corresponding q value is q = d = X10 +X8 +X7 +X6 +X5 +X2 +X+ 1. We recursively define

m̃i := ˜mi−10m̃1.

Since n is prime, we know that S0 := {q2, q4, ·, q1+n} is a basis of F2n/F2. We have X =
q2 + q4 + q6 + q8 + q12 + q18 + q22 so Tj := {q2(i+j) + X, i = 1, ..., n} is a basis for j = 1. Let
αi = q2(j+1) +X for i = 1, ..., n.



Writing α, β, γ in this basis, we get α = α1 + α4 + α6 + α8 + α9 + α10 + α11, β = α1 + α2 +
α4 + α6 + α7 + α8 + α9 + α10 + α11 and γ = α1 + α2 + α3 + α4 + α7 + α9 + α11. Finally we
compute a preimage of h as

m′ = mα0mβ000mγ

where

mα = µL(m1)µL(m4)µL(m6)µL(m8)µL(m9)µL(m10)µL(m11),
mβ = µU (m1)µU (m2)µU (m4)µU (m6)µU (m7)µU (m8)µU (m9)µU (m10)µU (m11),
mγ = µL(m1)µL(m2)µL(m3)µL(m4)µL(m7)µL(m9)µL(m11).

B Further experimental results on our first precomputing algorithm

Since it is unlikely that we can give a better theoretical analysis of our first precomputing
algorithm, we provide additional experimental results in this section.

The results shown in Figure 1 were obtained with each “shortest” polynomial of degree n.
Figure 2 shows similar results for randomly chosen polynomials. The algorithm always succeeds
with a value R satisfying 2R

R ≥ 6n. For reasonably large n, it always succeeds when 2R

R ≥ 4n.
When n increases the points get closer to the bound 2R

R ≥ 2n. Some of the points of Figure 1
and Figure 2 differ, but the differences are small and they only appear for small n.

n R n R n R

5 7 67 11 257 13
7 7 73 11 277 13
11 9 83 11 307 13
13 9 97 12 331 14
17 9 103 12 353 14
19 9 109 12 379 14
23 9 127 12 401 14
29 10 137 12 449 14
31 9 149 12 499 14
37 10 167 12 607 15
41 10 191 13 1021 15
47 11 211 13 2039 16
59 11 233 13
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Fig. 2. Minimal value R for different values n and random polynomials. The points on the staircase-like

curve are experimental results. The other curves are n = 2R

cR
for c = 1, 2, 3, 4, 5, 6.

To study these differences in more details, we generated twenty random polynomials of
degrees n = 11, n = 47 and n = 127. For each polynomial, we recorded the shortest value of
R for which the algorithm succeeded. (We started with short R values and increased R when
1000 α values linearly dependent with the previous ones were found). The results are presented
in Table 1. The minimal value R for the success of the algorithm does not depend very much
on the parameter p but only on its degree. Moreover, this dependence seems to disappear for
reasonably large degrees n. Therefore, the algorithm is likely to succeed for any p as long as
2R

R ≥ 4n (for reasonably large n values).



Table 1. Variability of the minimal R needed for the algorithm when the polynomial p is randomly
chosen. For each degree n and each R value, the table indicates how many polynomials p among the 20
polynomials generated required at least a randomness R.

n = 11 n = 47 n = 127

R = 7 3/20 R = 10 11/20 R = 12 20/20
R = 8 14/20 R = 11 9/20
R = 9 3/20

Choosing R close to the minimal value will improve the efficiency of the algorithm since
it performs linear algebra on vectors of length N + R. On the other hand, if R is chosen too
close to the minimum, the algorithm will have to generate more polynomials p′ before getting n
independent elements αi. In Table 2, it seems more efficient to choose R = 10 instead of R = 8
for the polynomial p(X) = X11 + X2 + 1, and R = 12 instead of R = 10 for the polynomial
p(X) = X47 + X5 + 1. The reason appears clearly in the toy example of the previous section,
presented in Table 1: in this example, all the dependencies obtained between the α values do
actually come from the fact that the same polynomials are generated various times.

Table 2. Number of iterations needed to obtain a basis of K, for various R and the polynomials
p(X) = X11 +X2 + 1 and p(X) = X47 +X5 + 1. The first row gives the total number of polynomials
generated, the second row gives the number of times the Mesirov and Sweet’s system had no solution,
and the last row gives the number of times a new α value was linearly dependent on the previous ones.
For each value R, we performed the experiment three times.

p(X) = X11 +X2 + 1

R = 8 R = 9 R = 10 R = 15 R = 20 R = 50

# pol. generated 48 36 25 41 61 46 28 24 38 35 23 19 27 26 17 25 28 22
# no sol. MS 21 9 6 28 44 30 15 8 22 22 11 8 14 11 6 11 13 10
# dependencies 16 16 8 2 6 5 2 5 5 2 1 0 2 4 0 3 4 1

p(X) = X47 +X5 + 1

R = 10 R = 11 R = 12 R = 15 R = 20 R = 50

# pol. generated 211 293 209 119 110 110 100 131 101 94 107 93 89 98 87 104 105 111
# no sol. MS 103 150 103 47 46 46 44 73 53 44 55 44 40 50 38 54 54 61
# dependencies 61 96 59 25 17 17 9 11 1 3 5 2 2 1 2 3 4 3

To conclude this section, we observe that in the experiments of Table 2, the Mesirov and
Sweet’s system had solutions respectively 49, 21% and 51, 36% of times for the polynomials
p(X) = X11 +X2 + 1 and p(X) = X47 +X5 + 1. This confirms the analysis of Section 5.1.


