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Charles-Goren-Lauter hash function

Katholieke Universiteit Leuven in Belgium.

Anticipating such a breakdown, Microsoft in

2005 banned both SHA-1 and MD5 from

new products and has removed MD5 from all

its current products, says Kristin Lauter, head

of the Cryptography Group at Microsoft

Research in Redmond, Washington. Fortu-

nately, a good backup is already available. In

2004, NIST issued several new standards,

collectively called SHA-2, which are more

secure than SHA-1 because they produce

longer hashes (up to 512 bits instead of 160).

But NIST worries that SHA-2 could even-

tually fall, too. “Everything that has been

attacked is in the same family,” says William

Burr of NIST’s Security Technology Group.

“It may turn out that they aren’t broken or

can’t be broken, but we didn’t want to get

caught out on the wrong side.”

After extensive debate, including two

international workshops in 2005 and 2006,

NIST decided that a new competition could

turn up completely new approaches to hash

functions. “We’ll be reluctant to pick some-

thing that looks just like SHA-2,” says Burr.

“We want some biodiversity.”

Although no designs have been formally

submitted yet—the deadline is in October—

experts predict that most entrants will con-

tinue to be iterative algorithms subtly

retooled to defeat the new kinds of attacks.

For instance, Preneel’s RIPEMD—one of the

few f irst-generation hash functions still

standing—performs two parallel iterations,

making it difficult for an attacker to figure

out which one to attack.

A second approach, called “provably

secure” hash functions, derives its presump-

tive security from math problems that are

considered to be hard to crack (see sidebar,

above). This type of algorithm typically does

not require multiple iterations, but it does

require cryptologists to put their faith in a

mathematical “black box.” Also, such algo-

rithms tend to be slower than iterative algo-

rithms because they require a more elaborate

calculation—even though it is performed

only once. Speed is at a premium for hash

functions, as they are typically used to tag a

document in the split-second it’s electroni-

cally transmitted.

Not surprisingly, mathematicians love

provably secure systems, whereas cryptolo-

gists have little use for them. “They are typi-

cally only provable with respect to one prop-

erty but are weak with respect to other proper-

ties,” says Joan Daemen of STMicroelectron-

ics, co-winner of the AES competition. For

instance, a “provably secure” hash developed

by Lenstra and his colleagues, called Very

Smooth Hash (VSH), was compromised last

year when Markku-Juhani Saarinen at a Span-

ish company called Kinamik showed that it

was easy to find “near-collisions” in VSH. In

practice, engineers often truncate a long hash

value to a shorter one, assuming that the trun-

cated hash will inherit the long one’s security.

Saarinen’s result means that they can’t count

on that with VSH.

In the final analysis, what makes it so

hard to come up with good hash func-

tions—and prove they work—is that they

are expected to do so many things. “You

expect them to do everything and blame

them when they don’t work,” says Preneel.

Perhaps a 4-year bake-off will be just what

the chef ordered to make some new hash

that will satisfy everybody’s tastes.

–DANA MACKENZIE

Dana Mackenzie is a freelance writer in Santa Cruz, 
California.
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Hash of the Future?

Have you ever struggled to solve a maze? Then imagine trying to find a
path through a tangled, three-dimensional maze as large as the Milky
Way. By incorporating such a maze into a hash function, Kristin
Lauter of Microsoft Research in Redmond, Washington, is betting
that neither you nor anyone else will solve that problem.

Technically, Lauter’s maze is called an “expander
graph” (see figure, right). Nodes in the graph corre-
spond to elliptic curves, or equations of the form y2 =
x3 + ax + b. Each curve leads to three other curves by
a mathematical relation, now called isogeny, that
Pierre de Fermat discovered while trying to prove
his famous Last Theorem.

To hash a digital file using an expander
graph, you would convert the bits of data
into directions: 0 would mean “turn right,”
1 would mean “turn left.” In the maze
illustrated here, after the initial step 1-2,
the blue path encodes the directions 1, 0, 1, 1, 0,
0, 0, 0, 1, ending at point 24, which would be the
digital signature of the string 101100001. The red
loop shows a collision of two paths, which would be
practically impossible to find in the immense maze
envisioned by Lauter.

Although her hash function (developed with colleagues
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func-
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter
believes it might be a winner. –D.M.
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Key exchange of the future?

I De Feo - Jao - Plût key exchange:
Alice and Bob use isogeny paths with two different
primes `1, `2; these paths commute

I Also public key encryption, zero-knowledge protocol
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Deuring’s correspondence

I Bijection from supersingular elliptic curves over F̄p

(up to Galois conjugacy)
to maximal orders in the quaternion algebra Bp,∞
ramified at p and infinity (up to equivalence)

E → O = End(E )

I An isogeny ϕ : E0 → E1 is sent to the left O-ideal
I = Hom(E1,E0)ϕ

I A path between two curves in the supersingular
`-isogeny graph is sent to an ideal of `-power norm
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Strategy to break CGL hash

I Translate collision and preimage resistance properties
in the quaternion world

I Break collision and preimage resistance properties
in the quaternion world

I Translate the attacks (as much as possible)
back to the elliptic curve world
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Definitions and notations

Quaternion algorithm overview

Subalgorithms

Partial translation to elliptic curves

Conclusion and future work
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Endomorphism ring of elliptic curves

I Endomorphism of E : group homomorphism defined by
a rational map E → E

(x , y)→
(
pX (x , y)

qX (x , y)
,
pY (x , y)

qY (x , y)

)

I Form a ring for point addition and map composition
I Include scalar multiplications [k] : (x , y)→ [k](x , y)
I Over Fq, include Frobenius π : (x , y)→ (xq, yq)
I Include linear combinations of both [a + bπ]
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Supersingular elliptic curves

I A curve / j-invariant over F̄p is supersingular
if its trace is 0 mod p

I Roughly p/12 supersingular j-invariants in F̄p,
all of them defined over Fp2

I Endomomorphism ring of a supersingular curve
I Contains some extra element φ such that φπ 6= πφ
I Contains linear combinations [a + bπ + cφ+ dπφ]
I Is a maximal order in the quaternion algebra Bp,∞
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The quaternion algebra Bp,∞

I Quaternion algebra over Q ramified at p and ∞
I Bp,∞ = Q〈i , j〉 with i2 = −q, j2 = −p, k = ij = −ji

for some q coprime to p

I Canonical involution, reduced trace, reduced norm and
associated bilinear form are
α = a + bi + cj + dk → ᾱ = a − bi − cj − dk
Trd(α) = α + ᾱ = 2a
Nrd(α) = αᾱ = a2 + qb2 + pc2 + pqd2

〈x , y〉 = Nrd(x + y)−Nrd(x)−Nrd(y)

I Under GRH we can choose q = O(log2 p)
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Ideals and Orders

I An ideal I ⊂ Bp,∞ is a lattice of dimension 4

I An order O ⊂ Bp,∞ is an ideal which is also a ring

I α ∈ Bp,∞ is integer if Trd(α) and Nrd(α) are integers

I Order elements are integers

I The left order of an ideal I is defined as

O`(I ) = {h ∈ Bp,∞|hI ⊂ I}

We say I is a left O-ideal

I Right orders and right ideals are defined similarly
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Ideals and Orders

I We can multiply ideals together, conjugate them

I If I is a left O-ideal then I Ī = NO

I A left O-ideal I of norm N can be written as
I = ON +Oα where N |Nrd(α)

I We say two orders O1 and O2 are in the same class
if qO1q

−1 = O2 for some q ∈ B∗p,∞
I We say two left O-ideals I1 and I2 are in the same class

and write I1 ≈ I2 if I1 = I2q for some q ∈ B∗p,∞



Ch. Petit - Neuchatel - March 2015 12

Ideals and Orders

I We can multiply ideals together, conjugate them

I If I is a left O-ideal then I Ī = NO
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Norm and norm forms

I Norm of ideal I is the minimal N such that ∀α ∈ I ,
Nrd(α)/N ∈ Z

I Norms are multiplicative

I Norm form associated to ideal I is

N(a, b, c , d) = Nrd(aω1 + bω2 + cω3 + dω4)

where {ω1, ω2, ω3, ω4} is a Z-basis of I

I Norm forms are quadratic equations with large
coefficients in general
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Maximal and extremal orders

I An order O is maximal if there is no other order
in Bp,∞ that contains O

I We say a maximal order O of Bp,∞ is p-extremal
if it contains π (= j as above) such that π2 = −p

I Extremal orders correspond to elliptic curves defined
over Fp, with Frobenius endomorphism π
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Special orders

I Let O extremal, and j ∈ O with j2 = −p
I Let R = O ∩Q[i ]

I Let ω such that R = Q[ω] and let D = disc(R)

I Then R + Rj has index D in O and

Nrd((x1 + y1ω) + (x2 + y2ω)j) = f (x1, y1) + pf (x2, y2)

where f principal quadratic form of discriminant D

I We say O is special if it is p-extremal with minimal D
among all p-extremal orders

I Special norm form will be crucial in our algorithms
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Isogenies

I An isogeny is a group homomorphism ϕ : E1 → E2

defined by a rational map

I degϕ := # kerϕ

I Dual isogeny ϕ̄ is the unique isogeny such that
ϕϕ̄ = [degϕ]
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Isogeny graphs

I Let p, ` be prime numbers, ` 6= p
I Define a supersingular isogeny graph by

I Vertices = supersingular elliptic curves over F̄p

(up to Galois conjugacy)
I Edges = `-degree isogenies between them

I (` + 1)-regular undirected graph

I No multiple edges if p = 1 mod 12
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Hash function

H : {0, 1}∗ → {0, 1}n

I Collision resistance:
hard to find m,m′ such that H(m) = H(m′)

I Preimage resistance:
given h, hard to find m such that H(m) = h

I Second preimage resistance:
given m, hard to find m′ such that H(m′) = h
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CGL hash function

H : {1, . . . , `}∗ → {supersingular j-invariants over Fp2}

I Let p, ` be prime numbers, ` 6= p, p = 1 mod 12

I For every j , define its neighbour set Nj

I For two neighbours ji−1, ji and for mi+1 ∈ {1, . . . , `},
define a rule σ(ji−1, ji ,mi+1) = ji+1 ∈ Nji \ {ji−1}

I Let j0 ∈ Fp2 be a supersingular j-invariant,
and let j−1 be one of its neighbours

I To hash a message, start from j−1, j0, compute ji+1

with σ recursively, return last j-invariant
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The `-isogeny path problem

I Preimage problem for CGL hash function:
Let E0 and E1 be two supersingular elliptic curves over
Fp2 with |E0(Fp2)| = |E1(Fp2)| = (p + 1)2.
Find e ∈ N and an isogeny of degree `e from E0 to E1.

I Quaternion version:
Let O0 and O1 be two maximal orders in Bp,∞.
Find e ∈ N and a left O0-ideal I with norm `e ,
with right order isomorphic to O1.
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A simpler problem

I Let O0 and O1 be two maximal orders in Bp,∞.
Compute a left O0-ideal I (of arbitrary norm)
with right order isomorphic to O1

I Solution:
I Compute O01 := O0 ∩ O1

I Compute M = the index of O01 in O0

I Compute I = {α ∈ Bp,∞|αO1ᾱ ⊆ MO0}
I Finding an ideal I connecting O0 and O1 is easy;

the norm condition makes the problem harder
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A reformulation

I Lemma:
Let I be a left O-ideal with Nrd(I ) = N . Let β ∈ I .
Then I β̄/N is a left O-ideal of norm Nrd(β)/N .

I The quaternion `-isogeny problem reduces to:
Finding β ∈ I with Nrd(β) = N`e for some e ∈ N
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Main algorithm’s overview

I Input: O0 and O1

I Output: ideal connecting them with power of ` norm

I Reduce to the case where O0 is special
I Compute an ideal connecting O0 and O1

I Replace it by an ideal I with prime norm N
I Let I = O0N +O0α. Compute e ∈ Z, λ coprime to N

and β such that{
β ≡ λα mod NO0

Nrd(β) = N`e

I Return J = I β̄/N
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Main algorithm’s overview (2)

I Satisfying β ≡ λα mod NO0 and Nrd(β) = N`e

seems easier when α ∈ Rj

so we

1. Compute a random γ ∈ O0 of reduced norm N`e0

2. Compute [µ] ∈ Rj such that α ≡ γ[µ] mod NO0

3. Compute λ ∈ Z and µ ∈ O0

such that µ ≡ λ[µ] and Nrd(µ) = `e1

4. Let β := γµ

I (This part can be seen as an explicit version of the
strong approximation theorem for Bp,∞)
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Focus on prime ideals

I Let O be an arbitrary maximal order and
let I be a left O-ideal of norm N

I We want J in the same class as I but with prime norm

I Algorithm:
I Compute a Minkowski basis {α1, α2, α3, α4} for I
I Generate random elements α =

∑
i xiαi

with xi ∈ [−m,m] until Nrd(α)/N prime
I Return I ᾱ/N
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Focus on special orders

I Suppose we have an algorithm when O0 is special

I Let O1 another maximal order and I12 a O1-left ideal

O0 O1

I12

I02 = I01I12
I01
J01

J02

J12

I Algorithm for O1:

1. Let I01 connecting O0 to O1 and let I02 = I01I12
2. Compute J01 = I01β̄01/Nrd(I01) with Nrd(I01) = `e01

Compute J02 = I02β̄02/Nrd(I02) with Nrd(I02) = `e02

3. Let J12 := I12β̄02β01/Nrd(I02)
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Integer representation by special orders

I Let O0 be special and let M a large enough integer

I We want γ ∈ R + Rj ⊂ O0 with reduced norm M

Nrd(γ) = f (x1, y1) + pf (x2, y2) = M

I Choose x2, y2 randomly until f (x1, y1) = M − pf (x2, y2)
can be solved with Cornaccia’s algorithm

I Note: crucial that D = disc(R) small for efficiency
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Computing [µ]

I Let O0 be special and let I = O0N +O0α

I Let γ ∈ O0 with norm N`e0

I We want [µ] ∈ Rj such that α ≡ γ[µ] mod NO0

I The kernel of mγ : µ→ γµ has dimension 2 in Bp,∞

I Rj also has dimension 2

I Solution space of α ≡ γ[µ] mod NO0 very likely
to intersect Rj modulo NO0 for random γ

I Linear system of equations over Z/NZ
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Lifting [µ] to an ` power norm element

I We have [µ] = (z0 +w0ω)j and want to find λ ∈ Z and

µ = λ[µ] + N ((x1 + ωy1) + (z1 + ωw1)j)

such that

Nrd(µ) = N2f (x1, y1)+p f (λz0+Nz1, λw0+Nw1) = `e

I Algorithm:
I Get λ from λ2f (z0,w0) = `e mod N
I Modulo N2, the norm equation is bilinear in z1,w1

I Take random small solutions for (w1, z1) until

f (x1, y1) = `e−pf (·,·)
N2 can be solved

I Note: crucial that D = disc(R) small for efficiency
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Algorithm summary

I Reduce to the case where O0 is special

I Compute an ideal connecting O0 and O1

I Replace it by an ideal I with prime norm N
I Let I = O0(N , α). Compute e ∈ Z, λ coprime to N ,

and β such that β ≡ λα mod NO0 and Nrd(β) = N`e

1. Compute a random γ ∈ O0 of reduced norm N`e0

2. Find [µ] ∈ Rj such that α ≡ γ[µ] mod NO0

3. Find λ ∈ Z and µ ∈ O0 such that
µ ≡ λ[µ] and Nrd(µ) = `e1

4. Let β := γµ and e = e0 + e1

I Return J = I β̄/N



Ch. Petit - Neuchatel - March 2015 33

Heuristic analysis

I We rely on heuristic assumptions on randomness of
representation of integers by quadratic forms and
distribution of primes

I For special orders, we then expect polynomial time
algorithm returning ideals of norm `e with

e ∼ 7

2
log`(p)

(Note that diameter ∼ 2 log` p)
I These features were verified in practice with a Magma

implementation, with p up to 200 bits

I Totally breaks quaternion variant of CGL
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Powersmooth ideals

I Input: O0 and O1

I Output: ideal connecting them with powersmooth
norm

N =
∏
i

peii with peii < B

I Can adapt previous algorithm and analysis;
similar complexity
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Deuring’s correspondence

I Bijection from supersingular elliptic curves over F̄p

(up to Galois conjugacy)
to maximal orders in the quaternion algebra Bp,∞
ramified at p and infinity (up to equivalence)

E → O = End(E )

I An isogeny ϕ : E0 → E1 is sent to the left O-ideal
I = Hom(E1,E0)ϕ

I A path between two curves in the supersingular
`-isogeny graph is sent to an ideal of `-power norm
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Special supersingular invariants

I When p = 3 mod 4, the curve E0 : y 2 = x3 − x is
supersingular with invariant j = 1728

I Let ι such that ι2 = −1. The map
φ : (x , y)→ (−x , ιy) is an endomorphism of E0

I The application θ : Bp,∞ → End(E0)⊗Q :

a + bi + cj + dk → 1 + bπ + cϕ + dϕπ

is an isomorphism of quaternion algebras

I We have End(E0) ≈ O0 := 〈1, j , j+k
2
, 1+i

2
〉
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Local travel in the supersingular graph

I Given a curve E and a positive integer d ,
we can compute the d torsion E0(F̄p)[d ]

I Given cyclic G ⊂ E0(F̄p)[d ], we can use
Vélu’s formulae to compute an isogeny of degree d
with kernel G , as well as its image E1

I Allows to travel locally in supersingular isogeny graph
(used to evaluate CGL hash function)
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Special supersingular invariants (2)

I Compute a supersingular invariant over Fp

I Under GRH we can choose q = O(log2 p)

I Compute the q-torsion and its q + 1 cyclic subgroups

I Compute all degree q isogenies using Vélu’s formulae

I One is sending j0 to itself: gives endomorphism ϕ

I We have End(E0) ⊆ 〈1, ϕ, π, ϕπ〉
I Deduce an isomorphism θ : O0 → End(E0)

I Identify the exact subring
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Explicit Deuring’s correspondence

I Input: maximal order O ⊂ Bp,∞
I Output: supersingular curve E with End(E ) ≈ O

I Compute a special E0, the corresponding O0 and a
map θ : O0 → End(E0)

I Compute an ideal I connecting O0 and O
I Let N = Nrd(I ) and let {ω1, ω2, ω3, ω4} a Z-basis
I Compute the corresponding isogeny ϕ

I Kernel of ϕ is the only cyclic subgroup of E0[N]
such that (θ(ωk))(G ) = 0

I Use Vélu’s formulae as above

I Problem: G ⊆ E0[N] is large
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Composite isogenies

I When N =
∏

peii , we have E0[N] =
∏

E0[peii ] and
kerϕ =

∏
Gi , where Gi cyclic subgroup of E0[peii ]

I Compute a basis {ω1, ω2, ω3, ω4} of I

I Initialize ϕ to the trivial map on E0

I For each i :
I Find Gi ⊂ E0[peii ] satisfying

(θ(ωk))(Gi ) = 0

I Compute an isogeny ϕi with kernel ϕ(Gi )
I Set ϕ← ϕiϕ

I Complexity now polynomial in max peii
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Explicit Deuring’s correspondence (2)

I Input: maximal order O ⊂ Bp,∞

I Output: supersingular invariant j with End(j) ≈ O

I Compute a special j0, the corresponding O0 and a map
θ : O0 → End(j0)

I Compute an ideal I connecting O0 and O
I Compute J ≈ I with powersmooth norm

I Compute the corresponding isogeny ϕ as above
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Endomorphism ring computation

I Given a supersingular j-invariant, compute End(j) and
a map θ : End(j)⊗Q→ Bp,∞

I Explicit Deuring correspondence, in the other direction

I Kohel: Õ(p) algorithm by expanding an isogeny tree

I Galbraith: Õ(p1/2) algorithm with birthday paradox

I Still a plausible “hard problem” today
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CGL attack on special initial points

I What: compute an endomorphism of E0 of degree `e

(collision attack for special parameters)

I Compute α ∈ O0 of norm `e

I Deduce Ii = O0α +O0`
i , i = 1, . . . , e

I For each i
I Compute Ji ≈ Ii with powersmooth norm
I Compute corresponding isogeny ϕi and j-invariant ji

I Deduce a collision path (j0, j1, . . . , je = j0)
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A trapdoor collision attack

I What: compute genuine-looking parameters together
with a collision trapdoor

I Choose a random path from j0, ending at j1
I Reveal j1 as initial point in the graph
I Keep the path as a trapdoor
I Use collision attack on j0
I Combine paths to produce collision on j1

I “Trapdoor one-way function” based on hardness
of computing the endomorphism ring of a random
supersingular elliptic curve
(except that using the trapdoor will reveal it)
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Impact of attacks

I CGL explicitely prevented small cycles to occur,
but existence of large cycles cannot be avoided

I To the best of our knowledge, the only way to
generate a random j is to start from j0 and do a
random walk as above
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Conclusion

I Total break of “quaternion CGL”
Can travel in the graph in polynomial time

I Partial break of original CGL hash function
I Collision attack on special parameters
I Trapdoor collision attack

I Explicit Deuring correspondence in one direction:
Given O, can compute corresponding j in polytime
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Future work and open problems

I Remove heuristic approximations in analysis

I Extend approach to other norm equations
(quaternions and beyond)

I Explicit Deuring correspondence in the other direction:
Given E , compute its endomorphism ring

I Security of De Feo-Jao-Plût schemes
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Thanks!

Looking forward to your questions / comments!
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