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Charles-Goren-Lauter hash function

Hash of the Future? 5

Have you ever struggled to solve a maze? Then imagine trying to finda 7% ey
path through a tangled, three-dimensional maze as large as the Milky = 15,
Way. By incorporating such a maze into a hash function, Kristin D o
Lauter of Microsoft Research in Redmond, Washington, is betting g ™

that neither you nor anyone else will solve that problem.

Technically, Lauter’s maze is called an “expander «
graph” (see figure, right). Nodes in the graph corre- o
spond to elliptic curves, or equations of the form y? = uo )
X +ax+ b. Each curve leads to three other curves by LJ )
a mathematical relation, now called isogeny, that )
Pierre de Fermat discovered while trying to prove
his famous Last Theorem.

To hash a digital file using an expander E : it
graph, you would convert the bits of data M
into directions: 0 would mean “turn right,” m ) (s6
1 would mean “turn left.” In the maze (2
illustrated here, after the initial step 1-2, m n ™
the blue path encodes the directions 1,0, 1, 1, 0, G
0,0, 0, 1, ending at point 24, which would be the 2
digital signature of the string 101100001. The red [
loop shows a collision of two paths, which would be ("o [
practically impossible to find in the immense maze o )
envisioned by Lauter. 0 W

Although her hash function (developed with colleagues o
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func- (2%, D
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter g
believes it might be a winner. -D.M. e «

www.sciencemag.org on March 13, 2008
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Key exchange of the future?

» De Feo - Jao - Plit key exchange:
Alice and Bob use isogeny paths with two different
primes {1, {>; these paths commute

» Also public key encryption, zero-knowledge protocol
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Deuring’s correspondence

» Bijection from supersingular elliptic curves over ]B_’p
(up to Galois conjugacy)
to maximal orders in the quaternion algebra B,
ramified at p and infinity (up to equivalence)

E — O = End(E)

» An isogeny ¢ : Eg — E; is sent to the left O-ideal
I = Hom(Eq, Eo)e

» A path between two curves in the supersingular
(-isogeny graph is sent to an ideal of /-power norm
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Strategy to break CGL hash

» Translate collision and preimage resistance properties
in the quaternion world

» Break collision and preimage resistance properties
in the quaternion world

» Translate the attacks (as much as possible)
back to the elliptic curve world
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Conclusion and future work
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Outline

Definitions and notations

Ch. Petit - Neuchatel - March 2015




Endomorphism ring of elliptic curves

» Endomorphism of E: group homomorphism defined by
a rational map E — E

(x,y) = (PX(W) Pv(w))

ax(x,y)" qv(x,y)

» Form a ring for point addition and map composition
» Include scalar multiplications [k] : (x,y) — [k](x,y)
» Over Fy, include Frobenius 7 : (x,y) — (x9, y9)
» Include linear combinations of both [a + b7]
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Supersingular elliptic curves

» A curve / j-invariant over FP is supersingular
if its trace is 0 mod p

» Roughly p/12 supersingular j-invariants in I[_?p,
all of them defined over [F .

» Endomomorphism ring of a supersingular curve

» Contains some extra element ¢ such that ¢m # ¢
» Contains linear combinations [a + bm + c¢ + d7¢]
» |s a maximal order in the quaternion algebra B,
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The quaternion algebra B,

v

Quaternion algebra over Q ramified at p and oo

Byoo = QUi,j) with 2 = —q, 2 = —p, k= ij = —ji
for some g coprime to p

v

Canonical involution, reduced trace, reduced norm and
associated bilinear form are
a=a+bi+c¢+dk—a=a—bi—c¢ — dk
Trd(a) = a+a =2a
Nrd(a) = aa = a°® + gb® + pc? + pqd?
(x,y) = Nrd(x + y) — Nrd(x) — Nrd(y)

Under GRH we can choose g = O(log® p)

v

v
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Ideals and Orders

» Anideal | C B, - is a lattice of dimension 4
» An order O C B, , is an ideal which is also a ring
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Ideals and Orders

v

An ideal | C B, . is a lattice of dimension 4

v

An order O C B,  is an ideal which is also a ring

v

a € B, is integer if Trd(«) and Nrd(«) are integers

v

Order elements are integers
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Ideals and Orders

v

An ideal | C B, . is a lattice of dimension 4

v

An order O C B,  is an ideal which is also a ring

v

a € B, is integer if Trd(«) and Nrd(«) are integers

v

Order elements are integers

v

The left order of an ideal / is defined as
Ou(l) ={h e By,|hl C I}

We say [ is a left O-ideal
Right orders and right ideals are defined similarly

v
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Ideals and Orders

» We can multiply ideals together, conjugate them
> If I is a left O-ideal then /] = NO
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Ideals and Orders

» We can multiply ideals together, conjugate them
> If I is a left O-ideal then /] = NO

» A left O-ideal | of norm N can be written as
I = ON + Oa where N|Nrd(«)
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Ideals and Orders

» We can multiply ideals together, conjugate them
If I is a left O-ideal then /T = NO

v

A left O-ideal | of norm N can be written as
I = ON + Oa where N|Nrd(«)

v

v

We say two orders O; and O, are in the same class
if gO1g7" = O, for some g € B;

v

We say two left O-ideals /; and | are in the same class
and write ; = b if Iy = ,q for some g € B;
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Norm and norm forms

» Norm of ideal I is the minimal N such that Vo € [,
Nrd(a)/N € Z

» Norms are multiplicative
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Norm and norm forms

» Norm of ideal I is the minimal N such that Vo € [,
Nrd(a)/N € Z

» Norms are multiplicative
» Norm form associated to ideal [ is

N(a, b, ¢, d) = Nrd(aw; + bw, + cws + dwy)

where {w1,wn, ws,ws} is a Z-basis of /
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Norm and norm forms

» Norm of ideal I is the minimal N such that Vo € [,
Nrd(a)/N € Z

» Norms are multiplicative

» Norm form associated to ideal [ is
N(a, b, ¢, d) = Nrd(aw; + bw, + cws + dwa)

where {w1,wn, ws,ws} is a Z-basis of /

» Norm forms are quadratic equations with large
coefficients in general
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Maximal and extremal orders

» An order O is maximal if there is no other order
in By o that contains O

» We say a maximal order O of B, , is p-extremal
if it contains 7 (= j as above) such that 72 = —p

» Extremal orders correspond to elliptic curves defined
over I, with Frobenius endomorphism
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Special orders

» Let O extremal, and j € O with j2 = —p
» Let R=0NQJi]
» Let w such that R = Q[w] and let D = disc(R)
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Special orders

Let O extremal, and j € O with j2= —p
Let R=0NQJi]
Let w such that R = Q[w] and let D = disc(R)

Then R + Rj has index D in O and
Nrd((x + y1w) + (e + yow)j) = f(x1, 1) + pf (%2, y2)

where f principal quadratic form of discriminant D

We say O is special if it is p-extremal with minimal D
among all p-extremal orders
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Special orders

Let O extremal, and j € O with j2= —p
Let R=0NQJi]
Let w such that R = Q[w] and let D = disc(R)

Then R + Rj has index D in O and
Nrd((x + y1w) + (e + yow)j) = f(x1, 1) + pf (%2, y2)

where f principal quadratic form of discriminant D

We say O is special if it is p-extremal with minimal D
among all p-extremal orders

Special norm form will be crucial in our algorithms
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Isogenies

» An isogeny is a group homomorphism ¢ : E; — E;
defined by a rational map
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Isogenies

» An isogeny is a group homomorphism ¢ : E; — E;
defined by a rational map

» deg = #kerp

» Dual isogeny ¢ is the unique isogeny such that
PP = [deg ]
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Isogeny graphs

» Let p, ¢ be prime numbers, ¢ # p
» Define a supersingular isogeny graph by

» Vertices = supersingular elliptic curves over I_Fp
(up to Galois conjugacy)
» Edges = /-degree isogenies between them
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Isogeny graphs

v

Let p, ¢ be prime numbers, ¢ # p

v

Define a supersingular isogeny graph by
» Vertices = supersingular elliptic curves over I_Fp
(up to Galois conjugacy)
» Edges = /-degree isogenies between them

v

(¢ + 1)-regular undirected graph

v

No multiple edges if p =1 mod 12
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Hash function

H:{0,1}" — {0,1}"

» Collision resistance:
hard to find m, m’" such that H(m) = H(m')

» Preimage resistance:
given h, hard to find m such that H(m) = h

» Second preimage resistance:
given m, hard to find m’ such that H(m') = h
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CGL hash function

H:{1,...,0}" — {supersingular j-invariants over [ }

» Let p, ¢ be prime numbers, ¢ # p, p =1 mod 12

» For every j, define its neighbour set N;

» For two neighbours j;_1, ji and for m;; € {1,..., ¢},
define a rule o(ji—1,ji, mi+1) = jir1 € N; \ {i—1}

» Let jo € F2 be a supersingular j-invariant,
and let j_; be one of its neighbours

» To hash a message, start from j_1, jo, compute ji
with o recursively, return last j-invariant
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The (-isogeny path problem

» Preimage problem for CGL hash function:
Let Ey and E; be two supersingular elliptic curves over
F2 with |Eo(Fp2)| = |E1(F,2)| = (p+ 1)
Find e € N and an isogeny of degree (¢ from Eq to E;.
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The (-isogeny path problem

» Preimage problem for CGL hash function:

Let Ey and E; be two supersingular elliptic curves over

F2 with |Eo(Fp2)| = |E1(F,2)| = (p+ 1)

Find e € N and an isogeny of degree (¢ from Eq to E;.
» Quaternion version:

Let Op and O; be two maximal orders in B, .

Find e € N and a left Op-ideal | with norm ¢¢,

with right order isomorphic to O;.
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Outline

Quaternion algorithm overview
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A simpler problem

» Let Op and O; be two maximal orders in B, .
Compute a left Op-ideal | (of arbitrary norm)
with right order isomorphic to O,
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A simpler problem

» Let Op and O; be two maximal orders in B, .
Compute a left Op-ideal | (of arbitrary norm)
with right order isomorphic to O,

» Solution:
» Compute Qg1 := Og N Oy
» Compute M = the index of Op; in Oq
» Compute | = {a € By |01 C MOp}
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A simpler problem

» Let Op and O; be two maximal orders in B, .
Compute a left Op-ideal | (of arbitrary norm)
with right order isomorphic to O,

» Solution:
» Compute Qg1 := Og N Oy
» Compute M = the index of Op; in Oq
» Compute | = {a € By |01 C MOp}
» Finding an ideal / connecting Oy and O; is easy;
the norm condition makes the problem harder
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A reformulation

» Lemma:
Let / be a left O-ideal with Nrd(/) = N. Let 3 € /.
Then I5/N is a left O-ideal of norm Nrd(5)/N.
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A reformulation

» Lemma:
Let / be a left O-ideal with Nrd(/) = N. Let 3 € /.
Then I5/N is a left O-ideal of norm Nrd(5)/N.

» The quaternion /-isogeny problem reduces to:
Finding $ € | with Nrd(5) = N¢¢ for some e € N
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Main algorithm’s overview

» Input: Qg and O
» Output: ideal connecting them with power of ¢ norm
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Main algorithm’s overview

v

Input: Op and O
Output: ideal connecting them with power of ¢ norm

v

v

Reduce to the case where O is special
Compute an ideal connecting Oy and O,
Replace it by an ideal / with prime norm N

v

v
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Main algorithm’s overview

Input: Op and O
Output: ideal connecting them with power of ¢ norm

Reduce to the case where O is special

Compute an ideal connecting Oy and O,

Replace it by an ideal / with prime norm N

Let | = OgN 4+ Ogar. Compute e € Z, A coprime to N
and [ such that

B = Aa mod NOgy
Nrd(B) = N¢e

Return J = I3/N
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Main algorithm's overview (2)

» Satisfying 5 = Ao mod NOgy and Nrd(3) = N¢¢
seems easier when a € Rj

Ch. Petit - Neuchatel - March 2015




Main algorithm’s overview (2)

» Satisfying 5 = Ao mod NOgy and Nrd(3) = N¢¢
seems easier when a € Rj so we
1. Compute a random v € Oy of reduced norm N{%
2. Compute [u] € Rj such that a = v[u] mod NOg
3. Compute A € Z and p € Og
such that © = A\[u] and Nrd(p) = ¢
4. Let Bi=vyp
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Main algorithm’s overview (2)

» Satisfying 5 = Ao mod NOgy and Nrd(3) = N¢¢
seems easier when a € Rj so we
1. Compute a random v € Oy of reduced norm N{%
2. Compute [u] € Rj such that a = v[u] mod NOg
3. Compute A € Z and p € Og
such that © = A\[u] and Nrd(p) = ¢
4. Let Bi=vyp

» (This part can be seen as an explicit version of the
strong approximation theorem for B, )
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Outline

Subalgorithms
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Focus on prime ideals

» Let O be an arbitrary maximal order and
let | be a left O-ideal of norm N

» We want J in the same class as / but with prime norm
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Focus on prime ideals

» Let O be an arbitrary maximal order and
let / be a left O-ideal of norm N

» We want J in the same class as / but with prime norm

» Algorithm:

» Compute a Minkowski basis {1, az, a3, as} for /|
» Generate random elements o« = E,-x,-oz;

with x; € [-m, m] until Nrd(«)/N prime
» Return la/N
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Focus on special orders

» Suppose we have an algorithm when Oy is special
» Let O; another maximal order and /15 a O;-left ideal

ha
o) o, —

» Algorithm for Os:
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Focus on special orders

» Suppose we have an algorithm when Oy is special
» Let O; another maximal order and /15 a O;-left ideal

.
0, — = 0

» Algorithm for Os:
1. Let lpy connecting Og to O1 and let lpp = g1
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Focus on special orders

» Suppose we have an algorithm when Oy is special
» Let O; another maximal order and /15 a O;-left ideal

lop = Io1 !
= ]
% i@/
02
» Algorithm for Os:

1. Let lpy connecting ?0 to @1 and let lpp = lp1 o
2. Compute Jp1 = 101@01/N1‘d(/01) with Nl‘d(/()l) = (0

Compute Jyo = /02,802/N1‘d(/02) with Nrd(loz) = (co2
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Focus on special orders

» Suppose we have an algorithm when Oy is special
» Let O; another maximal order and /15 a O;-left ideal

lop = Io1 !
/—\L
02
» Algorithm for Os:

1. Let lpy connecting ?0 to @1 and let lpp = lp1 o
2. Compute Jp1 = 101@01/N1‘d(/01) with Nl‘d(/()l) = (0

Compute Jyo = /02,802/N1‘d(/02) with Nrd(loz) = (co2
3. Let J12 := h2f0201/Nrd(lo2)
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Integer representation by special orders

» Let O be special and let M a large enough integer
» We want v € R+ Rj C Op with reduced norm M

Nrd(/}/) = f(Xlayl) + Pf(X2;Y2) =M
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Integer representation by special orders

v

Let Op be special and let M a large enough integer
We want v € R+ Rj C Oq with reduced norm M

v

Nrd(’}/) = f(X17y1) + Pf(X2;Y2) =M

v

Choose xa, y» randomly until f(xi,y1) = M — pf(xa, y»)
can be solved with Cornaccia’s algorithm

v

Note: crucial that D = disc(R) small for efficiency
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Computing [u]

» Let Oy be special and let | = OgN + Ogax
» Let v € Oy with norm N/(<
» We want [p] € Rj such that oo = y[u] mod NOg
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Computing [u]

Let Oq be special and let | = OgN + Opax
Let v € Op with norm N{*
We want [u] € Rj such that oo = y[u] mod NO,

The kernel of m, : ;1 — v has dimension 2 in B,
Rj also has dimension 2

Solution space of o« = y[u] mod NOy very likely
to intersect Rj modulo NQOy for random ~y
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Computing [u]

Let Oq be special and let | = OgN + Opax
Let v € Op with norm N{*
We want [u] € Rj such that oo = y[u] mod NO,

The kernel of m, : ;1 — v has dimension 2 in B,
Rj also has dimension 2

Solution space of o« = y[u] mod NOy very likely
to intersect Rj modulo NQOy for random ~y

Linear system of equations over Z/NZ
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Lifting [] to an ¢ power norm element

» We have [u] = (20 + wow)j and want to find A\ € Z and
p= A+ N((a +wyr) + (21 + wwi)j)
such that
Nrd(p) = N*f(x1, y1)+p F(Azo+Nzp, Awg+Nwy) = £€
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Lifting [] to an ¢ power norm element

» We have [u] = (20 + wow)j and want to find A\ € Z and
p= A+ N((a +wyr) + (21 + wwi)j)
such that
Nrd(p) = N*f(x1, y1)+p F(Azo+Nzp, Awg+Nwy) = £€

» Algorithm:
» Get A from A\2f(z, wp) = £¢ mod N
» Modulo N2, the norm equation is bilinear in z;, w;
» Take random small solutions for (ws, z1) until

f(x1,y1) = “=2H) can be solved
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Lifting [] to an ¢ power norm element

» We have [u] = (20 + wow)j and want to find A\ € Z and
p= A+ N((a +wyr) + (21 + wwi)j)
such that
Nrd(p) = N*f(x1, y1)+p F(Azo+Nzp, Awg+Nwy) = £€

» Algorithm:
» Get A from A\2f(z, wp) = £¢ mod N
» Modulo N2, the norm equation is bilinear in z;, w;
» Take random small solutions for (ws, z1) until
f(xi,y) = ZL;\’,# can be solved
» Note: crucial that D = disc(R) small for efficiency
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Algorithm summary

v

Reduce to the case where Oy is special

v

Compute an ideal connecting Oy and O,

v

Replace it by an ideal / with prime norm N

Let I = Og(N, ). Compute e € Z, A\ coprime to N,
and 3 such that 8 = Aa mod NO, and Nrd(8) = N¢©
1. Compute a random v € O of reduced norm N{€
2. Find [p] € Rj such that a = y[u] mod NOy
3. Find A € Z and p € Og such that
p = A[p] and Nrd(p) = ¢%
4. Let B:=~pand e = ey + €1

Return J = IB/N

v

v
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Heuristic analysis

We rely on heuristic assumptions on randomness of
representation of integers by quadratic forms and
distribution of primes

For special orders, we then expect polynomial time
algorithm returning ideals of norm /¢ with

7
€~ > log,(p)

(Note that diameter ~ 2log, p)

These features were verified in practice with a Magma
implementation, with p up to 200 bits
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Heuristic analysis

» We rely on heuristic assumptions on randomness of
representation of integers by quadratic forms and
distribution of primes

» For special orders, we then expect polynomial time
algorithm returning ideals of norm /¢ with

7
€~ 5 |0ge(P)

(Note that diameter ~ 2log, p)

» These features were verified in practice with a Magma
implementation, with p up to 200 bits

» Totally breaks quaternion variant of CGL
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Powersmooth ideals

» Input: Oy and O

» QOutput: ideal connecting them with powersmooth
norm

N=T]]p withpi<B
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Powersmooth ideals

» Input: Oy and O
» QOutput: ideal connecting them with powersmooth

norm
N=T]]p withpi<B

» Can adapt previous algorithm and analysis;
similar complexity
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Outline

Partial translation to elliptic curves
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Deuring’s correspondence

» Bijection from supersingular elliptic curves over ]B_’p
(up to Galois conjugacy)
to maximal orders in the quaternion algebra B,
ramified at p and infinity (up to equivalence)

E — O = End(E)

» An isogeny ¢ : Eg — Ej is sent to the left O-ideal
I = Hom(Eq, Eo)e

» A path between two curves in the supersingular
(-isogeny graph is sent to an ideal of /-power norm
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Special supersingular invariants

» When p = 3 mod 4, the curve Ey : y?> = x3 — x is

supersingular with invariant j = 1728
» Let ¢ such that t> = —1. The map
¢ : (x,¥) = (—=x,ty) is an endomorphism of E
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Special supersingular invariants

» When p = 3 mod 4, the curve Ey : y?> = x3 — x is
supersingular with invariant j = 1728

» Let ¢ such that t> = —1. The map
¢ : (x,¥) = (—=x,ty) is an endomorphism of E

» The application 0 : B, . — End(£) ® Q :

at+bi+c¢+dk — 1+br+cp+der

is an isomorphism of quaternion algebras
> We have End(Ey) ~ Oy = (1,j, 3K Lt

20 2
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Local travel in the supersingular graph

> Given a curve E and a positive integer d,
we can compute the d torsion Eo(F,)[d]

» Given cyclic G C Eo(F,)[d], we can use
Vélu’s formulae to compute an isogeny of degree d
with kernel G, as well as its image E;

» Allows to travel locally in supersingular isogeny graph
(used to evaluate CGL hash function)
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Special supersingular invariants (2)

» Compute a supersingular invariant over [,

» Under GRH we can choose g = O(log? p)
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Special supersingular invariants (2)

v

Compute a supersingular invariant over [F,,

Under GRH we can choose ¢ = O(log? p)

v

v

Compute the g-torsion and its g + 1 cyclic subgroups

v

Compute all degree g isogenies using Vélu's formulae

v

One is sending jy to itself: gives endomorphism ¢
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Special supersingular invariants (2)

Compute a supersingular invariant over [F,,

Under GRH we can choose g = O(log? p)

Compute the g-torsion and its g + 1 cyclic subgroups
Compute all degree g isogenies using Vélu's formulae
One is sending jy to itself: gives endomorphism ¢
We have End(Ep) C (1, ¢, m, om)

Deduce an isomorphism 6 : Oy — End(E)

Identify the exact subring
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Explicit Deuring’s correspondence

» Input: maximal order O C B,
» Output: supersingular curve E with End(E) ~ O
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Explicit Deuring’s correspondence

Input: maximal order O C B,
Output: supersingular curve E with End(E) ~ O

Compute a special Ey, the corresponding Oq and a
map 6 : Oy — End(E)

Compute an ideal / connecting Oy and O

Let N = Nrd(/) and let {wy, w2, ws,ws} a Z-basis
Compute the corresponding isogeny

» Kernel of ¢ is the only cyclic subgroup of Ep[N]
such that (6(wk))(G) =0
» Use Vélu's formulae as above
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Explicit Deuring’s correspondence

Input: maximal order O C B,
Output: supersingular curve E with End(E) ~ O

Compute a special Ey, the corresponding Oq and a
map 6 : Oy — End(E)

Compute an ideal / connecting Oy and O

Let N = Nrd(/) and let {wy, w2, ws,ws} a Z-basis
Compute the corresponding isogeny

» Kernel of ¢ is the only cyclic subgroup of Ep[N]
such that (6(wk))(G) =0
» Use Vélu's formulae as above

Problem: G C Ey[N] is large
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Composite isogenies

> When N =[] p{", we have Eo[N] =[] Eo[p;"] and
ker o = [ G;, where G; cyclic subgroup of Eo[p’]
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Composite isogenies

v

When N =[] p{, we have Eo[N] =[] Eo[p;"] and
ker o =[] G;, where G; cyclic subgroup of Ep[p’]

Compute a basis {wy, wa, w3, ws} of /

v

v

Initialize ¢ to the trivial map on Ey
For each i:
» Find G; C Eo[p"] satisfying

(0(wi))(Gi) =0

» Compute an isogeny @; with kernel ¢(G;)
» Set ¢ + pjp

v
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Composite isogenies

v

When N =[] p{, we have Eo[N] =[] Eo[p;"] and
ker o =[] G;, where G; cyclic subgroup of Ep[p’]

Compute a basis {wy, wa, w3, ws} of /

v

v

Initialize ¢ to the trivial map on Ey
For each i:
» Find G; C Eo[p"] satisfying

(0(wi))(Gi) =0

» Compute an isogeny @; with kernel ¢(G;)
» Set ¢ + pjp

v

v

Complexity now polynomial in max p;’
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Explicit Deuring's correspondence (2)

» Input: maximal order O C B,
» Output: supersingular invariant j with End(j) ~ O
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Explicit Deuring's correspondence (2)

v

Input: maximal order O C B,
Output: supersingular invariant j with End(j) ~ O

v

v

Compute a special jp, the corresponding Oy and a map
0: Oo — El’ld(jo)
Compute an ideal / connecting Oy and O

v

v

Compute J =~ | with powersmooth norm

v

Compute the corresponding isogeny  as above
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Endomorphism ring computation

» Given a supersingular j-invariant, compute End(j) and
amap 6 :End(j) ® Q — B,
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Endomorphism ring computation

v

Given a supersingular j-invariant, compute End(j) and
amap 6 :End(j) ® Q — B,

Explicit Deuring correspondence, in the other direction

v

v

Kohel: O(p) algorithm by expanding an isogeny tree
Galbraith: O(p'/?) algorithm with birthday paradox
Still a plausible “hard problem” today

v

v

Ch. Petit - Neuchatel - March 2015




CGL attack on special initial points

» What: compute an endomorphism of Ey of degree ¢¢
(collision attack for special parameters)
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CGL attack on special initial points

v

What: compute an endomorphism of Ey of degree ¢¢
(collision attack for special parameters)

v

Compute o € Oy of norm ¢¢
Deduce l; = Ogar+ Opl', i =1,... e
For each i

v

v

» Compute J; = [; with powersmooth norm
» Compute corresponding isogeny ; and j-invariant j;

v

Deduce a collision path (jo, /1, - - ,Je = Jo)
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A trapdoor collision attack

» What: compute genuine-looking parameters together
with a collision trapdoor
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A trapdoor collision attack

What: compute genuine-looking parameters together
with a collision trapdoor

Choose a random path from j, ending at j;
Reveal j; as initial point in the graph

Keep the path as a trapdoor

Use collision attack on jp

Combine paths to produce collision on j;
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A trapdoor collision attack

What: compute genuine-looking parameters together
with a collision trapdoor

Choose a random path from j, ending at j;
Reveal j; as initial point in the graph

Keep the path as a trapdoor

Use collision attack on jp

Combine paths to produce collision on j;

“Trapdoor one-way function” based on hardness
of computing the endomorphism ring of a random
supersingular elliptic curve

(except that using the trapdoor will reveal it)
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Impact of attacks

» CGL explicitely prevented small cycles to occur,
but existence of large cycles cannot be avoided

» To the best of our knowledge, the only way to
generate a random J is to start from jy and do a
random walk as above
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Outline

Conclusion and future work
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Conclusion

» Total break of “quaternion CGL"
Can travel in the graph in polynomial time
» Partial break of original CGL hash function
» Collision attack on special parameters
» Trapdoor collision attack
» Explicit Deuring correspondence in one direction:
Given O, can compute corresponding j in polytime
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Future work and open problems

» Remove heuristic approximations in analysis

» Extend approach to other norm equations
(quaternions and beyond)
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Future work and open problems

v

Remove heuristic approximations in analysis

v

Extend approach to other norm equations
(quaternions and beyond)

v

Explicit Deuring correspondence in the other direction:
Given E, compute its endomorphism ring

v

Security of De Feo-Jao-Pliit schemes
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Thanks!

Looking forward to your questions / comments!
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