
Improvement of Faugère et al.’s method
to solve ECDLP

Huang Yun-Ju1, Christophe Petit2?,
Naoyuki Shinohara3, and Tsuyoshi Takagi4

1 Graduate School of Mathematics, Kyushu University
y-huang@math.kyushu-u.ac.jp

2 UCL Crypto Group
3 NICT

4 Institute of Mathematics for Industry, Kyushu University

Abstract. Solving the elliptic curve discrete logarithm problem (ECDLP)
by using Gröbner basis has recently appeared as a new threat to the se-
curity of elliptic curve cryptography and pairing-based cryptosystems.
At Eurocrypt 2012, Faugère, Perret, Petit and Renault proposed a new
method using a multivariable polynomial system to solve ECDLP over
finite fields of characteristic 2. At Asiacrypt 2012, Petit and Quisquater
showed that this method may beat generic algorithms for extension de-
grees larger than about 2000.
In this paper, we propose a variant of Faugère et al.’s attack that practi-
cally reduces the computation time and memory required. Our variant is
based on the idea of symmetrization. This idea already provided practical
improvements in several previous works for composite-degree extension
fields, but its application to prime-degree extension fields has been more
challenging. To exploit symmetries in an efficient way in that case, we
specialize the definition of factor basis used in Faugère et al.’s attack
to replace the original polynomial system by a new and simpler one.
We provide theoretical and experimental evidence that our method is
faster and requires less memory than Faugère et al.’s method when the
extension degree is large enough.

Keywords: Elliptic curve, Discrete logarithm problem, Index calculus, Multi-
variable polynomial system, Gröbner basis

1 Introduction

In the last two decades, elliptic curves have become increasingly important in
cryptography. Elliptic curve cryptography requires shorter keys than factorization-
based cryptography. Additionally, elliptic curve implementations have become
increasingly efficient, and many cryptographic schemes have been proposed based
on the hardness of the elliptic curve discrete logarithm problem (ECDLP) or an-
other elliptic curve problem. These reasons led the American National Security

? F.R.S.-FNRS posdoctoral fellow at Université catholique de Louvain.



Agency (NSA) to advocate the use of elliptic curves for public key cryptography
in 2009 [1].

Given an elliptic curve E defined over a finite field K, some rational point
P of E and a second point Q ∈ 〈P 〉 ⊂ E, ECDLP requires finding an inte-
ger k such that Q = [k]P . Elliptic curves used in practice are defined either
over a prime field Fp or over a binary field F2n . Like any other discrete loga-
rithm problem, ECDLP can be solved with generic algorithms such as Baby-step
Giant-step algorithm, Pollard’s ρ method and their variants [2–5]. These algo-
rithms can be parallelized very efficiently, but the parallel versions still have an
exponential complexity in the size of the parameters. Better algorithms based
on the index calculus framework have long been known for discrete logarithm
problems over multiplicative groups of finite fields or hyperelliptic curves, but
generic algorithms have remained the best algorithms for solving ECDLP until
recently.

A key step of an index calculus algorithm for solving ECDLP is to solve
the point decomposition problem. Given a predefined factor basis F ⊂ E and a
random point R ∈ E, this problem asks the existence of points Pi ∈ F such that
R =

∑
i Pi. In 2004, Semaev introduced the summation polynomials (also known

as Semaev’s polynomials) to solve this problem. The Semaev’s polynomial sr is
a polynomial in r variables such that sr(x1, . . . , xr) = 0 if and only if there
exist r points Pi := (xi, yi) ∈ E such that

∑r
i=1 Pi = O. For a factor basis

FV := {(x, y)|x ∈ V } where V ⊂ K, the point decomposition problem now
amounts to computing all xi satisfying sr+1(x1, · · · , xr, x(R)) = 0 for the x-
coordinate x(R) of the given point R. Semaev’s polynomials therefore reduce
the decomposition problem on the elliptic curve E to algebraic problem over the
base field K.

Solving Semaev’s polynomials is not a trivial task in general, in particular
if K is a prime field. For extension fields K = Fqn , Gaudry and Diem [6, 7]
independently proposed to define V as the subfield Fq and to apply a Weil de-
scent to further reduce the resolution of Semaev’s polynomials to the resolution
of a polynomial system of equations over Fq. Diem generalized these ideas by
defining V as a vector subspace of Fqn [8]. Using generic complexity bounds
on the resolution of polynomial systems, these authors provided attacks that
can beat generic algorithms and can even have subexponential complexity for
specific families of curves [6]. At Eurocrypt 2012, Faugère, Perret, Petit and Re-
nault re-analized Diem’s attack [8] in the case F2n , and showed that the systems
arising from the Weil descent on Semaev’s polynomials are much easier to solve
than generic systems [9]. Later at Asiacrypt 2012, Petit and Quisquater pro-
vided heuristic evidence that ECDLP is subexponential for that very important
family of curves, and would beat generic algorithms when n is larger than about
2000 [10].

Even though these recent results suggest that ECDLP is weaker than previ-
ously expected for binary curves, the attacks are still far from being practical.
This is mainly due to the large memory and time required to solve the polynomial
systems arising from the Weil descent in practice. In particular, the experimental



results presented in [10] for primes n were limited to n = 17. In order to validate
the heuristic assumptions taken in Petit and Quisquater’s analysis and to esti-
mate the exact security level of binary elliptic curves in practice, experiments
on larger parameters are definitely required.

Hybrid methods (involving a trade-off between exhaustive search and poly-
nomial system solving) have been proposed to practically improve the resolution
of the polynomial systems [11]. More importantly, the special structure of these
systems can be exploited. When n is composite and the Weil descent is performed
on an intermediary subfield, Gaudry already showed in [7] how the symmetry of
Semaev’s polynomials can be exploited to accelerate the resolution of the poly-
nomial system in practice. In that case, the whole system can be re-written with
new variables corresponding to the fundamental symmetric polynomials, there-
fore reducing the degrees of the equations and improving their resolution. In the
particular cases of twisted Edward curves and twisted Jacobi curves, Faugère et
al. also exploited additional symmetry coming from the existence of a rational
2-torsion point to further reduce the degrees of the equations [12].

In this paper, we focus on Diem’s version of index calculus for ECDLP over
a binary field of prime extension degree n [8–10]. In that case, the Weil descent
is performed on a vector space that is not a subfield of F2n , and the resulting
polynomial system cannot be re-written in terms of symmetric variables only. We
therefore introduce a different method to take advantage of symmetries even in
the prime degree extension case. Our re-writing of the system involves both sym-
metric and non-symmetric variables. The total number of variables is increased
compared to [9, 10], but we limit this increase as much as possible thanks to
an appropriate choice of the vector space V . On the other hand, the use of
symmetric variables in our system allows reducing the degrees of the equations
significantly. Our experimental results show that our systems can be solved faster
than the original systems of [12, 21] as long as n is large enough.

Notations In this work, we are interested in solving the elliptic curve discrete
logarithm problem on a curve E defined over a finite field F2n , where n is a
prime number. We denote by Eα,β the elliptic curve over F2n defined by the
equation y2 + xy = x3 + αx2 + β. For a given point P ∈ E, we use x(P ) and
y(P ) to indicate the x-coordinate and y-coordinate of P respectively. From now
on, we use the specific symbols P , Q and k for the parameters and solution
of the ECDLP: P ∈ E, Q ∈ 〈P 〉, and k is the smallest non-negative integer
such that Q = [k]P . We identify the field F2n as F2[ω]/h(ω), where h is an
irreducible polynomial of degree n. Any element e ∈ F2n can then be represented
as poly(e) := c0 + c1ω+ ...+ cn−1ω

n−1 where ci ∈ F2. For any set S, we use the
symbol #S to mean the order of S.

Outline. The remaining of this paper is organized as follows. In Section 2, we
recall previous index calculus algorithms for ECDLP, in particular Faugère et
al.’s attack on binary elliptic curves and previous work exploiting the symmetry
of Semaev’s polynomials when the extension degree is composite. In Section 3, we
describe our variant of Faugère et al.’s attack taking advantage of the symmetries



even when the extension degree is prime. In Section 4, we provide experimental
results supporting our method with respect to Faugère et al.’s original attack.
Finally in Section 5, we conclude the paper and we introduce further work.

2 Index Calculus for Elliptic Curves

2.1 The Index Calculus Method

For a given point P ∈ Eα,β , let Q be a point in 〈P 〉. The index calculus method
can be adapted to elliptic curves to compute the discrete logarithm of Q with
respect to P .

Algorithm 1 Index Calculus for ECDLP [13]

Input: elliptic curve Eα,β , point P ∈ Eα,β , point Q ∈ 〈P 〉
1 F ←− a subset of Eα,β
2 M ←− matrix with #F + 2 columns
3 while Rank(M) < #F + 1 do
4 R←− [a]P + [b]Q where a and b are random integers in (0,#〈P 〉)
5 solm ←− Decompose(R,F)

6 M ←− AddRelationToMatrix(solm)

7 end
8 M ←− ReducedRowEchelonForm(M )

9 a′, b′ ←− last two column entries of last row
10 k ←− −a′/b′

Output: k, where Q = [k]P

As shown in Algorithm 1, we first select a factor base F ⊂ Eα,β and we
perform a relation search expressed as the loop between the line 3 and 7 of Al-
gorithm 1. This part is currently the efficiency bottleneck of the algorithm. For
each step in the loop, we compute R := [a]P + [b]Q for random integers a and
b and we apply the Decompose function on R to find all tuples (solm) of m
elements Pj` ∈ F such that Pj1 + Pj2 + · · · + Pjm + R = O. Note that we may
obtain several decompositions for each point R. In the line 6, the AddRela-
tionToMatrix function encodes every decomposition of a point R into a row
vector of the matrix M . More precisely, the first #F columns of M correspond
to the elements of F , the last two columns correspond to P and Q, and the co-
efficients corresponding to these points are encoded in the matrix. In the line 7,
the ReducedRowEchelonForm function reduces M into a row echelon form.
When the rank of M reaches #F + 1, the last row of the reduced M is of the
form (0, · · · , 0, a′, b′), which implies that [a′]P + [b′]Q = O. From this relation,
we obtain k = −a′/b′ mod #〈P 〉.

A straightforward method to implement the Decompose function would be
to exhaustively compute the sums of all m-tuples of points in F and to compare
these sums to R. However, this method would not be efficient enough.



2.2 Semaev’s Polynomials

Semaev’s polynomials [13] allow replacing the complicated addition law involved
in the point decomposition problem by a somewhat simpler polynomial equation
over F2n .

Definition 1 The m-th Semaev’s polynomial sm for Eα,β is defined as fol-
lows: s2 := x1 + x2, s3 := (x1x2 + x1x3 + x2x3)2 + x1x2x3 + β, and sm :=
ResX(sj+1(x1, ..., xj , X), sm−j+1(xj+1, ..., xm, X)) for m ≥ 4, 2 ≤ j ≤ m− 2.

The polynomial sm is symmetric and it has degree 2m−2 with respect to
each variable. Definition 1 provides a straightforward method to compute it. In
practice, computing large Semaev’s polynomials may not be a trivial task, even
if the symmetry of the polynomials can be used to accelerate it [11]. Semaev’s
polynomials have the following property:

Proposition 1 We have sm(x1, x2, ..., xm) = 0 if and only if there exist
yi ∈ F2n such that Pi = (xi, yi) ∈ Eα,β and P1 + P2 + ...+ Pm = O.

In Semaev’s seminal paper [13], he proposed to choose the factor base F in
Algorithm 1 as

FV := {(x, y) ∈ Eα,β |x ∈ V }
where V is some subset of the base field of the curve. According to Proposition 1,
finding a decomposition of a given point R = [a]P + [b]Q is then reduced to first
finding xi ∈ V such that

sm+1(x1, x2, ..., xm, x(R)) = 0,

and then finding the corresponding points Pj = (xj , yj) ∈ FV .
A straightforward Decompose function using Semaev’s polynomials is de-

scribed in Algorithm 2. In this algorithm, Semaev’s polynomials are solved by a

Algorithm 2 Decompose function with sm+1

Input: R = [a]P + [b]Q, factor base FV
1 Setm ←− {e ∈ FmV }
2 solm ←− {}
3 for e = {P1, P2, .., Pm} ∈ Setm do
4 if sm+1(x(P1), x(P2), ..., x(Pm), x(R)) = 0 then
5 if P1 + P2 + ... + Pm + R = O then
6 solm ←− solm ∪ {e}
7 end

8 end

9 end
Output: solm contains the decomposition elements of R w.r.t. FV

naive exhaustive search method. Since every x-coordinate corresponds to at most



two points on the elliptic curve Eα,β , each solution of sm+1(x1, x2, ..., xm, x(R)) =
0 may correspond to up to 2m possible solutions in Eα,β . These potential solu-
tions are tested in the line 5 of Algorithm 2. As such, Algorithm 2 still involves
some exhaustive search and can clearly not solve ECDLP faster than generic
algorithms.

2.3 Method of Faugère et al.

At Eurocrypt 2012, following similar approaches by Gaudry [7] and Diem [6,
8], Faugère et al. provided V with the structure of a vector space, to reduce
the resolution of Semaev’s polynomial to a system of multivariate polynomial
equations. They then solved this system using Gröbner basis algorithms [9].

More precisely, Faugère et al. suggested to fix V as a random vector subspace
of F2n/F2 with dimension n′. If {v1, . . . , vn′} is a basis of this vector space, the
resolution of Semaev’s polynomial is then reduced to a polynomial system as
follows. For any fixed P ′ ∈ FV , we can write x(P ′) as

x(P ′) = c̄1v1 + c̄2v2 + ...+ c̄n′vn′

where c̄` ∈ F2 are known elements. Similarly, we can write all the variables
xj ∈ V in sm+1 |xm+1=x(R) as{

xj = cj,1v1 + cj,2v2 + . . .+ cj,n′vn′ , 1 ≤ j ≤ m,
xm+1 = r0 + r1ω + . . .+ rn−1ω

n−1,

where cj,` are binary variables and r` ∈ F2 are known. Using these equations to
substitute the variables xj in sm+1, we obtain an equation

sm+1 = f0 + f1ω + . . .+ fn−1ω
n−1,

where f0, f1, ..., fn−1 are polynomials in the binary variables cj,l, 1 ≤ j ≤ m,
1 ≤ l ≤ n′ .

We have sm+1 |xm+1=x(R)= 0 if and only if each binary coefficient polynomial
fl is equal to 0. Solving Semaev’s polynomial sm+1 is now equivalent to solving
the binary multivariable polynomial system

f0(c1,1, . . . , c0,l, . . . , cm,n′) = 0,
f1(c1,1, . . . , c1,l, . . . , cm,n′) = 0,

...
fm(c1,1, . . . , cm,l, . . . , cm,n′) = 0,

(1)

in the variables cj,`, 1 ≤ j ≤ m, 1 ≤ ` ≤ n′.
The Decompose function using this system is described in Algorithm 3.

It is denoted as ImpFPPR in this work. We first substitute xm+1 with x(R) in
sm+1. The TransFromSemaevToBinaryWithSym function transforms the
equation sm+1 |xm+1=x(R)= 0 into System (1) as described above. To solve this



Algorithm 3 Decompose function with binary multivariable polyno-
mial system (ImpFPPR) [9]

Input: R = [a]P + [b]Q, factor base FV
1 F ←− TransFromSemaevToBinary(sm+1 |xm+1=x(R))

2 GB(F )←− GroebnerBasis(F,≺lex)
3 sol(F )←− GetSolutionFromGroebnerBasis(GB(F ))
4 solm ←− {}
5 for e = {P1, P2, .., Pm} ∈ sol(F ) do
6 if P1 + P2 + ... + Pm + R = O then
7 solm ←− solm ∪ {e}
8 end

9 end
Output: solm contains the decomposition elements of R w.r.t. FV

system, we compute its Gröbner basis with respect to a lexicographic ordering
using an algorithm such as F4 or F5 algorithm [14, 15]. A Gröbner basis for a lex-
icographic ordering always contains some univariate polynomial (the polynomial
1 when there is no solution), and the solutions of F can be obtained from the
roots of this polynomial. However, since it is much more efficient to compute a
Gröbner basis for a graded-reversed lexicographic order than for a lexicographic
ordering, a Gröbner basis of F is first computed for a graded-reverse lexico-
graphic ordering and then transformed into a Gröbner basis for a lexicographic
ordering using FGLM algorithm [16].

After getting the solutions of F , we find the corresponding solutions over
Eα,β . As before, this requires to check whether P1 + P2 + ...+ Pm +R = O for
all the potential solutions in the line 6 of Algorithm 3.

Although Faugère et al.’s approach provides a systematic way to solve Se-
maev’s polynomials, their algorithm is still not practical. Petit and Quisquater
estimated that the method could beat generic algorithms for extension degrees
n larger than about 2000 [10]. This number is much larger than the parame-
ter n = 160 that is currently used in applications. In fact, the degrees of the
equations in F grow quadratically with m, and the number of monomial terms
in the equations is exponential in this degree. In practice, the sole computation
of the Semaev’s polynomial sm+1 seems to be a challenging task for m larger
than 7. Because of the large computation costs (both in time and memory), no
experimental result has been provided yet when n is larger than 20.

In this work, we provide a variant of Faugère et al.’s method that practically
improves its complexity. Our method exploits the symmetry of Semaev’s poly-
nomials to reduce both the degree of the equations and the number of monomial
terms appearing during the computation of a Gröbner basis of the system F .



2.4 Use of Symmetries in Previous Works

The symmetry of Semaev’s polynomials has been exploited in previous works,
but always for finite fields Fpn with composite extension degrees n. The approach
was already described by Gaudry [7] as a mean to accelerate the Gröbner basis
computations. The symmetry of Semaev’s polynomials has also been used by
Joux and Vitse’s to establish new ECDLP records for composite extension degree
fields [11, 17]. Extra symmetries resulting from the existence of a rational 2-
torsion point have also been exploited by Faugère et al. for twisted Edward curves
and twisted Jacobi curves [12]. In all these approaches, exploiting the symmetries
of the system allows reducing the degrees of the equations and the number of
monomials involved in the Gröbner basis computation, hence it reduces both the
time and the memory costs.

To exploit the symmetry in ECDLP index calculus algorithms, we first rewrite
Semaev’s polynomial sm+1 with the elementary symmetric polynomials.

Definition 2 Let x1, x2, ..., xm be m variables, then the elementary symmet-
ric polynomials are defined as

σ1 :=
∑

1≤j1≤m xj1
σ2 :=

∑
1≤j1<j2≤m xj1xj2

σ3 :=
∑

1≤j1<j2<j3≤m xj1xj2xj3
...

σm :=
∏

1≤j≤m xj

(2)

Any symmetric polynomial can be written as an algebraic combination of
these elementary symmetric polynomials. We denote the symmetrized version of
Semaev’s polynomial sm by s′m. For example for the curve Eα,β in characteristic
2, we have

s3 = (x1x2 + x1x3 + x2x3)2 + x1x2x3 + β,

where x3 is supposed to be fixed to some x(R). The elementary symmetric
polynomials are

σ1 = x1 + x2,
σ2 = x1x2.

The symmetrized version of s3 is therefore

s′3 = (σ2 + σ1x3)2 + σ2x3 + β.

Since x3 is fixed and the squaring is a linear operation over F2, we see that
symmetrization leads to a much simpler polynomial.

Let us now assume that n is a composite number with a non-trivial factor n′.
In this case, we can fix the vector space V as the subfield Fpn′ of Fpn . We note
that all arithmetic operations are closed on the elements of V for this special
choice. In particular, we have

if xi ∈ V then σi ∈ V . (3)



Let now {1, ω2, . . . , ωn/n′} be a basis of Fpn/Fpn′ . We can write

σj = dj,0 for 1 ≤ j ≤ m,
xm+1 = r1 + r2ω2 + . . .+ rn/n′ωn/n′ ,

where r` ∈ Fpn are known and the variables dj,0 are defined over Fpn′ . These
relations can be substituted in the equation s′m+1 |xm+1=x(R)= 0 to obtain a
system of n/n′ equations in the m variables dj,0 only. Since the total degree
and the degree of s′m with respect to each symmetric variable σi are lower than
those of sm with respect to all non-symmetric variables xi, the degrees of the
equations in the resulting system are also lower and the system is easier to solve.
As long as n/n′ ≈ m, the system has a reasonable chance to have a solution.

Given a solution (σ1, . . . , σm) for this system, we can recover all possible
corresponding values for the variables x1, . . . , xm (if there is any) by solving the
system given in Definition 2, or equivalently by solving the symmetric polynomial
equation

xm +

m∑
i=1

σix
m−i = xm + σ1x

m−1 + σ2x
m−2 + . . .+ σm.

Note that the existence of a non-trivial factor of n and the special choice for
V are crucial here. Indeed, they allow building a new system that only involves
symmetric variables and that is significantly simpler to solve than the previous
one.

3 Using Symmetries with Prime Extension Degrees

When n is prime, the only subfield of F2n is F2, but choosing V = F2 would
imply to choose m = n, hence to work with Semaev’s polynomial sn+1 which
would not be practical when n is large. In Diem’s and Faugère et al.’s attacks [9,
8], the set V is therefore a generic vector subspace of F2n/F2 with dimension n′.
In that case, Implication (3) does not hold, but we now show how to nevertheless
take advantage of symmetries in Semaev’s polynomials.

3.1 A New System with both Symmetric and Non-Symmetric
Variables

Let n be an arbitrary integer (possibly prime) and let V be a vector subspace
of F2n/F2 with dimension n′. Let {v1, . . . , vn′} be a basis of V . We can write{

xj = cj,1v1 + cj,2v2 + ...+ cj,n′vn′ , for 1 ≤ j ≤ m
xm+1 = r0 + r1ω + ...+ rn−1w

n−1,

where cj,` with 1 ≤ j ≤ m and 1 ≤ ` ≤ n′ are variables but r`, 1 ≤ ` ≤ n are
known elements in F2.



Like in the composite extension degree case, we can use the elementary sym-
metric polynomials to write Semaev’s polynomial sm+1 as a polynomial s′m+1 in
the variables σj only. However since V is not a field anymore, constraining xj in
V does not constrain σj in V anymore. Since σj ∈ F2n , we can however write

σ1 = d1,0 + d1,1ω + . . .+ d1,n−1ω
n−1,

σ2 = d2,0 + d2,1ω + . . .+ d2,n−1ω
n−1,

...

σm = dm,0 + dm,1ω + . . .+ dm,n−1ω
n−1.

where dj,` with 1 ≤ j ≤ m and 1 ≤ ` ≤ n are binary variables. Using these
equations, we can substitute σj in s′m+1 to obtain

s′m+1 = f ′0 + f ′1ω + . . .+ f ′n−1ω
n−1

where f ′0, f
′
1, ..., f

′
n−1 are polynomials in the binary variables dj,`. Applying a

Weil descent on the symmetrized Semaev’s polynomial equation s′m = 0, we
therefore obtain a polynomial system

f ′0 = f ′1 = . . . = f ′n−1 = 0

in the mn binary variables dj,`.
The variables dj,` must also satisfy certain constraints provided by Sys-

tem (2). More precisely, substituting both the xj and the σj variables for binary
variables in the equation

σj =
∑

I⊂{1,...,m}
#I=j

∏
k∈I

xk ,

we obtain

dj,0 + dj,1ω + ...+ dj,n−1ω
n−1 = σj =

∑
I⊂{1,...,m}

#I=j

∏
k∈I

n′∑
`=1

ck,`v`

= gj,0 + gj,1ω + ...+ gj,n−1ω
n−1

where gj,` are polynomials in the mn′ binary variables ci,` only. In other words,
applying a Weil descent on each equation of System (2), we obtain mn new
equations

dj,` = gj,`

in the mn+mn′ binary variables cj,` and dj,`. The resulting system{
f ′j = 0, 1 ≤ j ≤ n,
dj,` = gj,`, 1 ≤ j ≤ m, 1 ≤ ` ≤ n,



has mn + n equations in mn + mn′ binary variables. As before, the system is
expected to have solutions if mn′ ≈ n, and it can then be solved using a Gröbner
basis algorithm.

In comparison with the simpler method of Faugère et al. (denoted as FPPR) [9],
the number of variables is multiplied by a factor roughly (m+ 1). However, the
degrees of our equations are also decreased thanks to the symmetrization, and
this may decrease the degree of regularity of the system. In order to compare
the time and memory complexities of both approaches, let DFPPR and DOurs

be the degrees of regularity of the corresponding systems. The time and memory
costs are respectively roughly N2D and N3D, where N is the number of variables
and D is the degree of regularity . Assuming that neither DFPPR nor DOurs

depends on n (as suggested by Petit and Quisquater’s experiments [10]), that
DOurs < DFPPR (thanks to the use of symmetric variables) and that m is small
enough, then the extra (m+ 1) factors in the number of variables will be a small
price to pay for large enough parameters. In practice, experiments are limited
to very small n and m values. For these small parameters, we could not observe
any significant advantage of this variant with respect to Faugère et al.’s original
method. However, the complexity can be improved even further in practice with
a clever choice of vector space.

3.2 A Special Vector Space

In the prime degree extension case, V cannot be a subfield, hence the symmetric
variables σj are not restricted to V . This led us to introduce mn variables dj,`
instead of mn′ variables only in the composite extension degree case. However,
we point out that some vector spaces may be “closer to a subfield” than other
ones. In particular if V is generated by the basis {1, ω, ω2, . . . , ωn

′−1}, then we
have

if xj ∈ V then σ2 ∈ V ′

where V ′ ⊃ V is generated by the basis {1, ω, ω2, . . . , ω2n′−2}.
More generally, we can write

σ1 = d1,0 + d1,1ω + ...+ d1,n′−1ω
n′−1,

σ2 = d2,0 + d2,1ω + ...+ d2,2n′−2ω
2n′−2,

...
σm = dm,0 + dm,1ω + ...+ dm,n−mω

n−m.

Applying a Weil descent on s′m+1 |xm+1=x(R) and each equation of System (2)
as before, we obtain a new polynomial system{

f ′j = 0, 1 ≤ j ≤ n,
dj,` = gj,`, 1 ≤ j ≤ m, 0 ≤ ` ≤ j(n′ − 1),

in n+ (n′ − 1)m(m+1)
2 +m equations and n′m+ (n′ − 1)m(m+1)

2 +m variables.



sm+1 s′m+1 s′m+1 with specific V

variables number mn′ mn′ + mn mn′ + (n′ − 1)m(m+1)
2

+ m

polynomials number n n + mn n + (n′ − 1)m(m+1)
2

+ m

degree of regularity 7 or 6 4 or 3 4 or 3
Table 1. Comparison for different multivariate polynomial system

When m is large and mn′ ≈ n, the number of variables is decreased by a
factor 2 if we use our special choice of vector space instead of a random one. For
m = 4 and n ≈ 4n′, the number of variables is reduced from about 5n to about
7n/2. For m = 3 and n ≈ 3n′, the number of variables is reduced from about 4n
to about 3n thanks to our special choice for V . In practice, this improvement
turns out to be significant.

3.3 New Decomposition Algorithm

Our new algorithm for the decomposition problem is described in Algorithm 4.
It is denoted as ImpOurs in this work. The only difference between ImpFPPR

Algorithm 4 Decompose function with binary multivariable polyno-
mial system and symmetric elementary functions (ImpOurs)

Input: R = [a]P + [b]Q, factor base FV
1 F ←− TransFromSemaevToBinaryWithSym(sm+1 |xm+1=x(R))

2 F ←− GroebnerBasis(F)

3 sol(F )←− GetSolutionFromGroebnerBasis(F )

4 solm ←− {}
5 for e = {P1, P2, .., Pm} ∈ sol(F ) do
6 if P1 + P2 + ... + Pm + R = O then
7 solm ←− solm ∪ {e}
8 end

9 end
Output: solm contains the decomposition elements of R w.r.t. FV

and ImpOurs comes from a different transformation function in the line 1 of
Algorithm 4. Although the system solved in ImpOurs contains more variables and
equations than the system solved in ImpFPPR, the degrees of the equations are
smaller and they involve less monomial terms. We now describe our experimental
results.



4 Experimental Results

To validate our analysis and experimentally compare our method with Faugère et
al.’s previous work, we implemented both algorithms in Magma. All our exper-
iments were conducted on a CPU with four AMD Opteron Processor 6276 with
16 cores, running at 2.3GHz with a L3 cache of 16MB. The Operating System
was CentOS 6.3 with Linux kernel version 2.6.32-279.14.1.el6.x86 64 and 512GB
memory. The programming platform was Magma V2.18-9 in its 64-bit version.
Gröbner basis were computed with the GroebnerBasis function of Magma. Our
implementations of ImpFPPR and ImpOurs share the same program, except that
the former uses Algorithm 3 and the latter uses Algorithm 4 to set up the bi-
nary multivariate system. We first focus on the relation search, then we describe
experimental results for a whole ECDLP computation.

4.1 Relation Search

The relation search is the core of both Faugère et al.’s algorithm and our variant.
In our experiments, we considered a fixed randomly chosen curve Eα,β , a fixed
ECDLP with respect to P , and a fixed m = 3 for all values of the parameters n
and n′. For random integers a and b, we used both Faugère et al.’s method and
our approach to find factor basis elements Pj ∈ FV such that P1 + · · · + Pm =
[a]P + [b]Q.

We focused on m = 3 (fourth Semaev’s polynomial) in our experiments.
Indeed, there is no hope to solve ECDLP faster than with generic algorithms
using m = 2 because of the linear algebra stage at the end of the index calculus
algorithm5. On the other hand, the method appears unpractical for m = 4 even
for very small values of n because of the exponential increase with m of the
degrees in Semaev’s polynomials.

The experimental results are given in Table 2 and 3. For most values of the
parameters n and n′, the experiment was repeated 200 times and average values
are presented in the table. For large values n′ = 6, the experiment was only
repeated 3 times due to the long execution time.

We noticed that the time required to solve one system varied significantly
depending on whether it had solutions or not. Table 2 and 3 therefore present
results for each case in separate columns. The table contains the following infor-
mation: Dreg is the maximum degree appearing when solving the binary system
with Magma’s Gröbner basis routine; var is the number of F2 variables of the
system; poly and mono are the number of polynomials and monomials in the
system; rel is the average number of solutions obtained (modulo equivalent solu-
tions through symmetries); ttrans and tgroe are respectively the time (in seconds)
needed to transform the polynomial sm+1 into a binary system and to compute
a Gröbner basis of this system; mem is the memory required by the experiment
(in MB).

5 In fact, even m = 3 would require a double large prime variant of the index calculus
algorithm described above in order to beat generic discrete logarithm algorithms [7].



n n’
sol: yes sol: no

Dreg var poly mono ttrans tgroe mem Dreg var poly mono ttrans tgroe mem

ImpFPPR 17 3 6 9 17 2070.59 3.95 1.08 21.51 6 9 17 2149.37 4.50 0.09 23.40
ImpOurs 17 3 3 24 32 826.12 0.67 1.14 14.86 3 24 32 867.87 0.72 0.24 16.26

ImpFPPR 19 3 6 9 19 2305.76 4.44 1.08 27.55 6 9 19 2401.07 4.97 0.11 29.59
ImpOurs 19 3 3 24 34 912.57 0.75 1.13 19.75 3 24 34 962.67 0.79 0.31 20.90

ImpFPPR 23 3 6 9 23 2792.97 5.47 1.06 29.10 6 9 23 2908.92 6.18 0.12 32.25
ImpOurs 23 3 3 24 38 1079.60 0.91 1.04 15.59 3 24 38 1147.65 0.97 0.14 16.68

ImpFPPR 29 3 6 9 29 3509.17 6.94 1.02 38.85 6 9 29 3669.15 7.75 0.07 43.14
ImpOurs 29 3 3 24 44 1329.85 1.15 0.95 17.16 3 24 44 1427.97 1.22 0.17 18.43

ImpFPPR 31 3 6 9 31 3739.76 7.38 1.03 41.12 5 9 31 3922.40 8.38 0.06 46.33
ImpOurs 31 3 3 24 46 1428.49 1.24 0.90 17.59 3 24 46 1515.79 1.30 0.04 18.87

ImpFPPR 37 3 6 9 37 4450.86 8.90 1.00 48.88 6 9 37 4677.23 9.99 0.06 54.81
ImpOurs 37 3 3 24 52 1673.42 1.48 0.88 19.23 3 24 52 1800.79 1.58 0.05 20.85

ImpFPPR 41 3 6 9 41 4921.38 9.81 0.98 54.35 6 9 41 5182.97 11.17 0.06 61.70
ImpOurs 41 3 3 24 56 1847.03 1.64 0.87 20.58 3 24 56 1983.08 1.75 0.05 22.60

ImpFPPR 43 3 6 9 43 5175.86 10.47 0.99 57.69 6 9 43 5436.94 11.73 0.06 64.74
ImpOurs 43 3 3 24 58 1931.96 1.76 0.87 21.28 3 24 58 2076.11 1.86 0.05 23.24

ImpFPPR 47 3 6 9 47 5631.62 11.29 1.00 63.77 5 9 47 5947.98 12.85 0.06 72.47
ImpOurs 47 3 3 24 62 2116.38 1.92 0.83 23.17 3 24 62 2263.80 2.02 0.06 25.32

ImpFPPR 53 3 6 9 53 6358.94 12.86 1.03 72.06 5 9 53 6706.36 14.57 0.07 81.22
ImpOurs 53 3 3 24 68 2348.50 2.12 0.79 24.89 2 24 68 2541.59 2.28 0.04 27.52

ImpFPPR 17 4 7 12 17 8997.76 15.47 6.81 58.16 7 12 17 9028.92 16.53 1.20 55.37
ImpOurs 17 4 3 33 38 1622.88 1.31 3.91 31.52 3 33 38 1641.84 1.33 2.23 24.88

ImpFPPR 19 4 7 12 19 9915.47 17.04 6.88 67.24 7 12 19 10072.64 17.85 1.54 64.78
ImpOurs 19 4 3 33 40 1823.58 1.51 3.26 32.97 3 33 40 1823.69 1.46 1.57 27.11

ImpFPPR 23 4 6 12 23 12059.19 21.06 6.83 95.66 6 12 23 12201.94 22.31 4.67 91.23
ImpOurs 23 4 3 33 44 2173.29 1.83 3.19 29.63 3 33 44 2173.69 1.81 1.72 22.75

ImpFPPR 29 4 6 12 29 15048.54 26.63 6.56 125.32 6 12 29 15361.50 27.80 1.37 129.78
ImpOurs 29 4 3 33 50 2652.74 2.30 3.11 32.95 3 33 50 2716.43 2.29 1.06 27.88

ImpFPPR 31 4 6 12 31 16130.71 28.94 3.37 136.23 6 12 31 16443.60 30.19 1.56 142.69
ImpOurs 31 4 3 33 52 2839.32 2.49 3.20 35.30 3 33 52 2907.78 2.48 1.24 29.22

ImpFPPR 37 4 6 12 37 19466.94 35.03 2.43 172.56 6 12 37 19611.72 35.68 0.88 176.13
ImpOurs 37 4 3 33 58 3314.88 2.93 2.45 31.32 3 33 58 3437.06 2.96 0.49 32.45

ImpFPPR 41 4 6 12 41 21095.65 37.58 2.79 189.16 6 12 41 21756.74 39.80 0.84 201.77
ImpOurs 41 4 3 33 62 3668.86 3.24 2.23 33.84 3 33 62 3783.47 3.33 0.56 35.49

ImpFPPR 43 4 6 12 43 22472.30 40.59 2.24 207.05 6 12 43 22868.33 41.39 0.85 210.59
ImpOurs 43 4 3 33 64 3857.07 3.41 2.23 35.02 3 33 64 3965.76 3.48 0.60 36.51

ImpFPPR 47 4 6 12 47 24264.24 43.37 2.10 225.73 6 12 47 24955.58 46.01 0.66 239.89
ImpOurs 47 4 3 33 68 4197.12 3.73 2.12 37.93 3 33 68 4336.85 3.84 0.67 39.78

ImpFPPR 53 4 6 12 53 27655.34 50.63 1.86 272.55 6 12 53 28043.51 52.26 0.37 279.83
ImpOurs 53 4 3 33 74 4701.09 4.19 1.75 40.46 3 33 74 4824.09 4.36 0.46 42.63

Table 2. Comparison of the relation search (m = 3, n′ = 3, 4) with two strategies,
ImpFPPR and ImpOurs. Dreg, var, poly and mono are the degree of regularity, the
number of variables, the number of polynomials and the number of monomials in the
system. ttrans and tgroe are the transformation time and solving Gröbner basis time
(seconds). men is the memory consumptions for solving the system (MB).



n n’
sol: yes sol: no

Dreg var poly mono ttrans tgroe mem Dreg var poly mono ttrans tgroe mem

ImpFPPR 17 5 7 15 17 29408.19 46.53 218.87 723.08 7 15 17 29562.07 48.06 59.82 725.07
ImpOurs 17 5 4 42 44 2680.14 2.21 485.10 596.46 4 42 44 2687.94 2.16 136.93 492.88

ImpFPPR 19 5 7 15 19 32812.55 50.50 91.61 401.17 7 15 19 32300.00 54.03 41.80 348.01
ImpOurs 19 5 4 42 46 3264.00 1.97 516.67 619.63 4 42 46 2922.50 2.67 182.92 492.82

ImpFPPR 23 5 7 15 23 40168.90 64.67 70.46 475.55 7 15 23 39659.80 65.07 55.75 381.39
ImpOurs 23 5 4 42 50 3572.00 3.01 157.86 323.60 4 42 50 3619.30 3.07 17.83 253.16

ImpFPPR 29 5 7 15 29 50156.00 81.75 109.40 587.39 7 15 29 50403.80 80.99 50.75 530.53
ImpOurs 29 5 4 42 56 4414.90 3.67 140.47 372.59 4 42 56 4356.70 3.82 20.03 278.07

ImpFPPR 31 5 7 15 31 53222.10 84.08 70.64 547.86 7 15 31 53415.30 85.50 53.56 410.47
ImpOurs 31 5 4 42 58 4781.80 3.99 130.07 362.76 4 42 58 4800.60 4.13 20.98 279.23

ImpFPPR 37 5 7 15 37 63941.80 101.06 158.23 828.44 7 15 37 64215.10 103.29 88.29 690.51
ImpOurs 37 5 3 42 64 5586.20 4.85 11.68 118.00 3 42 64 5496.80 4.87 6.85 57.52

ImpFPPR 41 5 6 15 41 70895.30 113.85 230.40 889.70 7 15 41 71215.80 114.09 69.12 930.24
ImpOurs 41 5 3 42 68 6042.50 5.33 13.26 126.19 3 42 68 5986.60 5.34 8.53 58.99

ImpFPPR 43 5 6 15 43 75145.70 118.87 75.46 600.95 6 15 43 74671.20 118.31 39.69 615.72
ImpOurs 43 5 3 42 70 6223.40 5.41 11.35 89.33 3 42 70 6470.90 5.74 8.21 56.86

ImpFPPR 47 5 6 15 47 81488.60 128.63 65.03 674.87 6 15 47 81215.20 131.95 45.34 693.31
ImpOurs 47 5 3 42 74 7043.30 6.07 9.57 109.38 3 42 74 7183.40 6.26 4.71 60.15

ImpFPPR 53 5 6 15 53 91642.50 147.66 80.76 810.08 6 15 53 92314.60 150.41 23.31 814.76
ImpOurs 53 5 3 42 80 8034.10 6.83 6.68 59.58 3 42 80 7849.50 6.96 1.36 59.91

ImpFPPR 23 6 7 18 23 107008.67 163.45 3888.70 6656.13 7 18 23 105744.33 156.11 3309.43 5025.06
ImpOurs 23 6 4 51 56 5270.00 4.36 5150.12 4791.31 4 51 56 5510.33 4.42 3082.15 4428.07

ImpFPPR 29 6 7 18 29 136465.67 198.99 4511.74 6685.01 7 18 29 137194.33 204.07 1681.27 6528.03
ImpOurs 29 6 4 51 62 6093.33 5.67 2848.46 3368.01 4 51 62 6263.33 5.76 932.65 2681.20

ImpFPPR 31 6 7 18 31 145504.00 209.98 4664.25 7336.11 7 18 31 145700.33 206.29 1205.29 7276.85
ImpOurs 31 6 4 51 64 6538.33 5.82 2811.99 3257.82 4 51 64 6916.67 6.09 1049.14 2616.21

ImpFPPR 37 6 7 18 37 171914.33 248.24 4733.79 9777.27 7 18 37 175419.00 256.90 1126.29 9812.93
ImpOurs 37 6 4 51 70 8223.00 6.77 1101.04 1327.00 4 51 70 8459.33 7.10 146.14 927.36

ImpFPPR 41 6 7 18 41 189028.67 279.05 1045.53 4416.99 7 18 41 192778.33 266.44 653.92 3062.68
ImpOurs 41 6 4 51 74 9297.67 7.87 953.60 1361.59 4 51 74 9246.00 8.31 87.61 896.38

ImpFPPR 43 6 7 18 43 203094.33 298.13 1444.41 4288.28 7 18 43 199325.67 280.46 787.02 3796.57
ImpOurs 43 6 4 51 76 9899.33 8.02 920.13 1340.39 4 51 76 8958.33 8.33 82.37 918.05

ImpFPPR 47 6 7 18 47 222208.67 326.22 1278.79 4524.33 7 18 47 221999.67 326.08 463.62 3287.07
ImpOurs 47 6 4 51 80 10789.00 9.06 858.66 1296.09 4 51 80 10438.33 9.24 80.54 919.39

ImpFPPR 53 6 7 18 53 245891.33 366.92 2967.03 7311.44 7 18 53 248212.33 359.03 1857.65 6677.92
ImpOurs 53 6 3 51 86 11748.00 10.48 34.82 151.04 3 51 86 11744.00 10.70 31.21 151.02

Table 3. Comparison of the relation search (m = 3, n′ = 5, 6) with two strategies,
ImpFPPR and ImpOurs.



n #Eα,β ImpFPPR ImpOurs

7 4*37 1.574 0.864
11 4*523 8.625 6.702
13 4*2089 49.698 31.058
17 4*32941 2454.470 1364.742
19 4*131431 22474.450 9962.861

Table 4. Comparison of two ECDLP strategies, ImpFPPR and ImpOurs. The last two
columns are computing time in seconds.

probability to get an answer 2mn′

m!2n
complexity NωD

m increases probability increases D increases, N increases.

n′ increases probability increases N increases.

Table 5. Trade-off for choosing m and n′. N : total number of variables. D: degree of
regularity.

The experiments show that the degrees of regularity of the systems occurring
during the relation search are decreased from values between 6 and 7 in Faugère
et al.’s method to values between 3 and 4 in our method. This is particularly
important since the complexity of Gröebner basis algorithms is exponential in
this degree. However, this huge advantage of our method comes at the cost of a
significant increase in the number of variables, which itself tends to increase the
complexity of Gröbner basis algorithms. Our experimental results confirm the
analysis of Section 3: while our method may require more memory and time for
small parameters (n, n′), it becomes more efficient than Faugère et al.’s method
when the parameters increase. We remark that although the time required to
solve the system may be larger with our method than with Faugère et al.’s
method for small parameters, the time required to build this system is always
smaller. This is due to the much simpler structure of s′m+1 compared to sm+1

(lower degrees and less monomial terms).

4.2 Whole ECDLP Computation

In a next step, we also implemented the whole ECDLP algorithm with the two
strategies ImpFPPR and ImpOurs. For n in {7, 11, 13, 17, 19}, we ran the whole
attack using m = 3 and several values for n′. The orders of the curves we picked
in our experiments are shown in Table 4 together with the experimental results
for the best value of n′, which turned out to be 3 in all cases. Timings provided
in the table are in seconds and averaged over 20 experiments. Table 4 clearly
shows that our method (ImpOurs) is more efficient than Faugère et al.’s method
(ImpFPPR).

It may look strange that n′ = 3 leads to optimal timings at first sight. Indeed,
the ECDLP attacks described above use mn′ ≈ n and a constant value for n′



leads to a method close to exhaustive search. However, this is consistent with the
observation already made in [9, 10] that exhaustive search is more efficient than
index calculus for small parameters. Table 5 also shows that while increasing n′

increases the probability to have solutions, it also increases the complexity of
the Gröebner basis algorithm. This increase turns out to be significant for small
parameters.

5 Conclusion and Future work

In this paper, we proposed a variant of Faugère et al.’s attack on the binary
elliptic curve discrete logarithm problem (ECDLP). Our variant takes advantage
of the symmetry of Semaev’s polynomials to compute relations more efficiently.
While symmetries had also been exploited in similar ECDLP algorithms for
curves defined over finite fields with composite extension degrees, our method is
the first one in the case of extension fields with prime extension degrees, which
is the most interesting case for applications.

At Asiacrypt 2012, Petit and Quisquater estimated that Faugère et al.’s
method would beat generic discrete logarithm algorithms for any extension de-
gree larger than roughly 2000. We provided heuristic arguments and experi-
mental data showing that our method reduces both the time and the memory
required to compute a relation in Faugère et al.’s method, unless the parameters
are very small. Our results therefore imply that Petit and Quisquater’s bound
can be lowered a little.

Our work raises several interesting questions. On a theoretical side, it would
be interesting to prove that the degrees of regularity of the systems appearing
in the relation search will not rise when n increases (in all our experiments
for various parameter sizes, they were equal to either 3 or 4). It would also be
interesting to provide a more precise analysis of our method and to precisely
estimate for which values of the parameters it will become better than Faugère
et al.’s method.

On a practical side, it would be interesting to improve the resolution of
the systems even further. One idea in that direction is pre-computation. The
relation search involves solving a large number of closely related systems, where
only the value x(R) changes from one system to the other. The transformation of
Semaev’s polynomial into a binary multivariate system could therefore be done
in advance, and its cost be neglected. In fact, even the resolution of the system
could potentially be improved using special Gröebner basis algorithms such as
F4 trace [18, 14]. A second direction on the practical side is parallelization. A
powerful feature of Pollard’s ρ method and its variants is their highly-parallelized
structure. Since our method saves memory compared to Faugère et al.’s method,
it is also more suited to parallelization.

Using Gröbner basis algorithms to solve ECDLP is a very recent idea. We
expect that the index calculus algorithms that have recently appeared in the
literature will be subject to further theoretical improvements and practical op-
timizations in a close future.



References

1. National Security Agency: The case for elliptic curve cryptography. http://www.

nsa.gov/business/programs/elliptic_curve.shtml (January 2009)
2. Shanks, D.: Class number, a theory of factorization, and genera. In: 1969 Number

Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York,
Stony Brook, N.Y., 1969), Providence, R.I. (1971) 415–440

3. Pollard, J.M.: A Monte Carlo method for factorization. BIT Numerical Mathe-
matics 15 (3) (1975) 331–334

4. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT Numerical
Mathematics 20 (1980) 176–184

5. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. Journal of Cryptol-
ogy 13 (2000) 437–447

6. Diem, C.: An index calculus algorithm for plane curves of small degree. In Hess,
F., Pauli, S., Pohst, M.E., eds.: ANTS. Volume 4076 of Lecture Notes in Computer
Science., Springer (2006) 543–557

7. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. Journal of Symbolic Computation 44(12) (2009)
1690 – 1702

8. Diem, C.: On the discrete logarithm problem in elliptic curves. Compositio Math-
ematica 147 (2011) 75–104

9. Faugère, J.C., Perret, L., Petit, C., Renault, G.: Improving the complexity of index
calculus algorithms in elliptic curves over binary field. In: Proceedings of Eurocrypt
2012. Volume 7237 of Lecture Notes in Computer Science., Springer Verlag (2012)
27–44

10. Petit, C., Quisquater, J.J.: On polynomial systems arising from a Weil descent.
In Wang, X., Sako, K., eds.: Advances in Cryptology ASIACRYPT 2012. Volume
7658 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2012)
451–466

11. Joux, A., Vitse, V.: Elliptic curve discrete logarithm problem over small degree
extension fields. Journal of Cryptology (2011) 1–25

12. Faugère, J.C., Gaudry, P., Huot, L., Renault, G.: Using symmetries in the index
calculus for elliptic curves discrete logarithm. IACR Cryptology ePrint Archive
2012 (2012) 199

13. Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic
curves. IACR Cryptology ePrint Archive 2004 (2004) 31

14. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1-3) (1999) 61–88

15. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 international symposium on
Symbolic and algebraic computation. ISSAC ’02, New York, NY, USA, ACM (2002)
75–83

16. Faugère, J., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. Journal of Symbolic Computa-
tion 16(4) (1993) 329 – 344

17. Joux, A., Vitse, V.: Cover and decomposition index calculus on elliptic curves made
practical - application to a previously unreachable curve over Fp6 . In Pointcheval,
D., Johansson, T., eds.: EUROCRYPT. Volume 7237 of Lecture Notes in Computer
Science., Springer (2012) 9–26

18. Joux, A., Vitse, V.: A variant of the F4 algorithm. In Kiayias, A., ed.: CT-RSA.
Volume 6558 of Lecture Notes in Computer Science., Springer (2011) 356–375


