
Cayley Hashes:
A Class of Efficient Graph-based Hash Functions

Christophe Petit1?, Kristin Lauter2 and Jean-Jacques Quisquater1

1UCL Crypto Group, 2Microsoft Research.

e-mails: christophe.petit@uclouvain.be,klauter@microsoft.com,jjq@uclouvain.be

Abstract Hash functions are widely used in cryptography. Recent break-
throughs against the standard SHA-1 prompted NIST to launch a compe-
tition for a new secure hash algorithm, SHA-3 [1]. Provably secure hash
functions, that is functions whose security reduces to a simply-stated, sup-
posedly hard mathematical problem, are widely believed to be much too slow
for the NIST competition.
In this paper, we discuss Cayley hashes, a class of efficient and provably
secure hash functions constructed from the Cayley graphs of (projective)
linear groups. We review two existing constructions, the ZT and LPS hash
functions, and put a new one forward, the Morgenstern hash function. We
show that Cayley hashes are “provable” and efficient: on one hand, their
security reduces to a representation problem in (projective) linear groups; on
the other hand, they are only 5 times slower than SHA-2 in FPGA hardware,
and about 400 times slower in software (in our future implementations, many
optimizations currently under investigation are expected to decrease these
gaps even more). Last but not least, Cayley hash computation can be easily
parallelized. We believe their nice properties as well as their elegant design
make Cayley hashes very interesting hash functions.

1 Introduction

Hash functions are widely used in cryptographic applications such as commitment
schemes, digital signatures schemes, message authentication codes or password en-
cryption. Typically, a hash function is required to be preimage and collision resistant
and have nearly uniform output distribution. Due to the importance of crypto-
graphic hash functions, the SHA family was designed as a standard [2]. However,
recently discovered vulnerabilities in SHA-1 [23] prompted NIST to launch a com-
petition for a New Cryptographic Hash Algorithm [1].

Practical vs. provable hashes Most current hash functions are made of a compression
function and of a transform. The compression function processes a fixed number of
bits and returns a fixed smaller number of bits. The transform uses the compression
function iteratively to produce a fixed-length output from a sequence of arbitrary
length. A good transform is supposed to be at least preimage, collision and second-
preimage resistant if the compression function has the same properties.
? Research Fellow of the Belgian Fund for Scientific Research (F.R.S.-FNRS).

In practice, the compression function is often instantiated by a block cipher, that
is, its security is simply assumed, not related to the hardness of some mathematical
problem. Noticed exceptions to this practice are Lyubashevsky et al. FFT Hashing
[17], Contini et al. VSH [9], and Charles et al. hashes based on Pizer’s and LPS’
Ramanujan graphs [5]. The security of these hashes respectively reduces to a lattice
problem, a variant of the factorization problem, finding isogenies between elliptic
curves, and a representation problem in a projective linear group.

A good reduction to a simply formulated mathematical challenge facilitates the
evaluation process and increases the confidence once the function has resisted first
cryptanalytic attempts. However, the price for a mathematical proof has so far
always been paid in efficiency. Indeed, constructing an efficient and provable hash
function seems a big challenge nowadays.

Cayley hashes In this paper, we examine three satisfactory solutions to this problem:
the ZT hash function, which was designed in the past by Zémor and Tillich [22], the
LPS hash function, whose efficiency we greatly enhance, and the Morgenstern hash
function, which is new. The advantage of LPS hash over ZT hash is that it is based
on a Ramanujan graph family; on the other hand it involves operations in a large
prime field rather than a field of even characteristic, hence an efficiency loss. Our
new proposal, based on Morgenstern’s Ramanujan graphs, combines the advantages
of both. We group the three hash functions under the name “Cayley hashes” because
they are based on Cayley graphs of certain (projective) special linear groups.

The output distributions of Cayley hashes tend to uniformity as the message
length increases, while collision and preimage resistance are equivalent to the hard-
ness of simply-stated representation problems. Cayley hashes return a fixed length
digest from an arbitrary-length input message, that is, no additional transform is
needed to process large messages. Like RSA for example, they can be easily defined
for any security level. Constructing keyed Cayley hash functions can be done in a
very simple and natural way. The main drawback of Cayley hashes (at least in some
applications) is their “malleability” so in Section 6, we present a heuristic way to
remove this property at the expense of at most half the efficiency.

We also show how to make Cayley hashes much faster than stated in Charles
et al. paper [5]. Indeed, they are much faster than what would be expected from
a provable hash. In our very first implementations Cayley hashes are only 5 times
slower than SHA-256 in FPGA hardware, and only about 400 times slower than
SHA-256 in software. We are currently investigating many ideas that together could
even accelerate these functions by a factor 10. Finally, we point out that Cayley
hashes are fully parallelizable, so their computation can be made even much faster,
especially in hardware.

Outline of the paper This paper is organized as follows: in Section 2 we present gen-
eral and particular constructions of Cayley hashes, Section 3 reviews their security
properties and Section 4 deals with the representation problem. Section 5 sketches
efficient algorithms for computing them as well as our first implementation results.
Section 6 presents current research and open problems and Section 7 concludes the
paper.

2 Cayley Hashes

2.1 General presentation

Cryptographic Hash Functions. A hash function or hash H : M → H transforms
an input of a large size (or of arbitrary size) into an output of small, fixed size. The
elements of the domain M are called messages and the elements of the codomain
H are called hashes. Properties required for hash functions are as wide as their
applications:

– The preimage resistance roughly requires that given the hash of a randomly
chosen message, it is computationally hard to recover any message with that
hash.

– The second preimage resistance requires that given a randomly chosen mes-
sage, it is computationally hard to find a second message with the same hash.

– The collision resistance requires that it is computationally hard to find two
messages with the same hash.

– A universal hash function has nearly uniformly distributed outputs.
– A universal one-way hash function roughly satisfies preimage resistance and

uniform output distribution.
– A random oracle is an abstraction for a “perfectly random” function.

We refer to [12,14] for formal definitions of those properties.

Expander graphs. Let G = (V,E) be a graph with vertex set V and edge set E ⊂
V × V . The directed girth g of G is the largest g such that given any two vertices v1

and v2 of V , any pair of distinct directed paths joining v1 to v2 will be such that one
of those paths has length at least g. (If G is undirected, the girth is the smallest cycle
in the graph.) The expanding constant h of G is defined as h = min

1≤|S|≤ |V |
2

|δ(S)|
|S|

where S is any subset of V and δ(S) is the set of edges in E connecting S to V \ S.
In this paper, we are focussing on regular expander graphs, that is, regular graphs

with a large expanding constant. The eigenvalues of the adjacency matrix of a k-
regular graph with |V | vertices satisfy λ0 = k ≥ λ1 ≥ ... ≥ λ|V |−1 ≥ −k, and the
double bound k−λ1

2 ≤ h ≤
√

2k(k − λ1) relates h to λ1 [4,10]. A bound of Alon-
Boppana says that while |V | goes to infinity, λ1 cannot be too small, more precisely,
lim inf |V |→+∞ λ1 ≥ 2

√
k − 1, which implies that h cannot be too large. A k-regular

Ramanujan family of graphs is a family of k-regular graphs with increasing number
of vertices, such that lim inf |V |→+∞ λ1 = 2

√
k − 1. In that sense, Ramanujan graphs

are graphs with asymptotically optimal expansion properties. We refer to the recent
survey [13] for more details on expander graphs.

From Cayley Graphs to Cayley Hashes. A Cayley graph CG,S = (V,E) is a graph
constructed from a group G and a subset S of G as follows: V contains a vertex vg

associated to each element g ∈ G, and E contains the directed edge (vg1 , vg2) iff there
is some s ∈ S such that g2 = g1s. For a set S of size k, the Cayley graph CG,S is a
k-regular graph. In this paper, we consider the Cayley graphs of (projective) special

linear groups, which are known to display good expanding properties [21,15,19], or
even to be Ramanujan [16,8,18].

To construct a Cayley hash from a directed Cayley graph, let {1, ..., k}∗ be the
set of arbitrary-length sequences (m1,m2,m3, ...ml) of elements of {1, ..., k}. Fixing
an initial value g0 = 1 in G and an ordering σ : {1, ..., k} → S, determines a Cayley
hash function H : {1, ..., k}∗ → G defined by H() = g0, H(m1) = g0σ(m1) and
H(m1,m2, ...,ml) = H(m1,m2, ...,ml−1)σ(ml). (Note that the successive computa-
tions of g0σ(m1), g0σ(m1)σ(m2), etc. correspond to a walk from vg0 to vg0σ(m1),
g0vσ(m1)σ(m2), etc. in the Cayley graph CG,S .) If S is stable under inversion, the
corresponding Cayley graph CG,S is undirected. To avoid backtracking (that would
lead to trivial collisions), the messages are decomposed in (k − 1)-its rather than
k-its, and H is defined as H(m1,m2,m3, ...,ml) = H(m1,m2,m3, ...,ml−1)σl with
σ1 = σ(m1) and σi = Σ(σi−1,mi) := σ

(
σ−1(σ−1

i−1) + mi mod k
)
, i ∈ {2, ..., l}.

A hash function H ′ : {0, 1}∗ → {0, 1}log2 |G| sending bitstrings to bitstrings is
derived from H as H ′ = π2 ◦ H ◦ π1, where π1 : {0, 1}∗ → {1, ..., k}∗ and π2 :
G → {0, 1}log2 |G| are respectively initial and final mappings. A keyed Cayley hash
is constructed similarly, by letting the element g0 be a function of the key.

2.2 ZT and LPS hashes

ZT hash function. The ZT hash was designed in the past by Zémor and Tillich
[21,22,24], but without much care to the parameters. Rapidly, a number of attacks
were discovered [6,20,3] that exploited this lack of specificity and lead to a lack of
confidence in the function even if it remains essentially unbroken.

The definition is as follows: Let Pn(X) be an irreducible polynomial of degree
n in F2[X], and let K = F2[X]/(Pn(X)). Let G = SL(2,K) ∼= PSL(2,K), S ={

A0 =
(

X 1
1 0

)
, A1 =

(
X X + 1
1 1

)}
, and g0 =

(
1 0
0 1

)
. ZT hash is the Cayley hash

corresponding to CG,S with starting point g0.
Originally, Zémor and Tillich only imposed the degree n of the polynomial Pn(X)

to be in the range 130− 170. In our specifications, we will be much more restrictive
in the light of existing attacks (see Section 4). We require n to be a prime close to
1024, such that the factorization of 22n− 1 involves at least one prime of size larger
than 80 bits (ideally 22n − 1 = 3p1p2 for some primes p1, p2). Moreover, trapdoor
attacks are avoided if Pn(X) is defined in a deterministic and clearly honest way, for
example as the smallest irreducible polynomial of degree n larger than the binary
representation of π. The output of the new ZT hash function is about 3072 bits.

LPS hash function LPS hashes were introduced by Charles, Goren and Lauter
[5]. They make use of undirected Ramanujan graphs independently discovered by
Lubotzky, Phillips and Sarnak, and by Margulis [16].

Let p and l be primes, l small and p large, both p and l equal to 1 mod 4, and
l being a quadratic residue modulo p. To l and p is associated an LPS graph Xl,p

as follows. Let i be an integer such that i2 = −1 mod p. The vertices of Xl,p are

matrices in G = PSL(2, Fp). The set S is taken as S = {Gj , j = 1..., l + 1}, where

Gj =
(

g0,j + ig1,j g2,j + ig3,j

−g2,j + ig3,j g0,j − ig1,j

)
, j = 1, ..., l + 1;

where (g0,j , g1,j , g2,j , g3,j) are all the solutions of g2
0 + g2

1 + g2
2 + g2

3 = l, with g0 > 0
and g1, g2, g3 even. Note that S is stable under inversion, so the Cayley graph CG,S

is undirected. The LPS hash function is the Cayley hash associated to CG,S , starting
at the identity.

Charles, Goren and Lauter recommend the use of a prime p of 1024 bits, and a
short prime l. As additional constraint, we stress the necessity that the factorization
of p2−1 involves at least one prime of size larger than 80 bits (ideally p2−1 = 24p1p2

for large primes p1 and p2). The prime p should be fixed in some deterministic, clearly
honest way. The output of the hash function is about 3072 bits.

2.3 Morgenstern hashes

Morgenstern’s Ramanujan graphs [18] generalize LPS graphs from an odd prime
p ≡ 1 mod 4 to any power of prime q. We suggest to use his graphs with q = 2k for
a hash function.

Let q be a power of 2 and f(X) = X2 + X + ε irreducible in Fq[X]. Let g(X) ∈
Fq[X] be irreducible of even degree n = 2d and let Fqn ≈ Fq[X]/(g(X)). The vertices
of the Morgenstern graph Γq are elements of G = PSL2(Fqn). Let i ∈ Fqn be a root
of f(X). The set S is taken as S = {Gj , j = 1..., q + 1}, where

Gj =
(

1 γj + δji
(γj + δji + δj)X 1

)
, j = 1, ..., q + 1;

where γj , δj ∈ Fq are all the q + 1 solutions in Fq for γ2
j + γjδj + δ2

j ε = 1. Note that,
as each of the Gj has order 2, the Cayley graph CG,S is undirected. Morgenstern
hash function is the Cayley hash associated to CG,S , starting at the identity.

Taking q = 2 is particularly attractive for efficiency reasons. We also recommend
to choose n = 2d ≈ 1024, with d prime such that the factorization of 24d−1 involves
at least one prime of size larger than 80 bits (ideally 2d − 1 = 3p1, 2d + 1 = p2 and
22d + 1 = p3, with p1, p2, p3 primes). Again, the polynomial g(X) should be fixed in
a deterministic, clearly honest way. The output of the hash function is about 3072
bits.

3 Security of Cayley Hashes

Cayley hashes enjoy important security properties:

– Any two colliding messages differ by at least g bits (or k-its), where g is the
(directed) girth of the corresponding graph. This results directly from the def-
initions. From [21,16,18], the girths of ZT, LPS and Morgenstern graphs (with
parameter size of 1024 bits) are respectively larger than about 1024, 882 and
1024.

– The outputs tend to be uniformly distributed as the message set becomes larger,
and the convergence rate is fast. This comes from the good expanding proper-
ties of ZT, LPS and Morgenstern graphs, and results easily from the mixing
properties of random walks on expander graphs [13].

– Differential cryptanalysis (DC), which has been the most successful approach
against SHA-1, does not seem to apply to Cayley hashes. Indeed, DC typically
activates various portions of the message simultaneously, while in Cayley hashes
the bits (or k-its) are processed one at the time.

– Collision resistance is equivalent to the hardness of a simply-stated representa-
tion problem in the corresponding linear groups: see Problems 1, 2 and Propo-
sition 1 below.

– Preimage resistance and second preimage resistance follow from collision resis-
tance and Proposition 2 below.

Problem 1 Let H be any of the Cayley hash functions defined in Sections 2.2 or
2.3 with recommended parameters. Let S = {G1, ...Gk} ⊂ G the generators for H.
Find a product (in reduced form) ∏

1≤i≤N

Gei

θ(i) = 1

where ei are integers, θ : {1, ...N} → {1...k} and
∑

ei is logarithmic in the size of
G. By reduced form, we mean that for each i, Gθ(i+1) 6= Gθ(i), G

−1
θ(i).

Problem 2 Same as Problem 1, but the ei are additionally required to be positive
integers.

Proposition 1 A solution to Problem 2 where H is ZT, LPS or Morgenstern hash
implies a collision under H, which in turn implies a solution to Problem 1 for H.
For LPS and Morgenstern’s hashes, Problem 1, Problem 2 and finding collisions are
all as hard.

Proof: Similar as the proof in [5].

Proposition 2 Any collision-resistant hash with arbitrary input size is (a) second
preimage resistant and (b) preimage resistant.

Proof: This is a classical result. Let H be a collision-resistant hash.
(a) Suppose we have an algorithm A that, upon input of a message m, is able

to produce a second message m′ such that H(m) = H(m′) with non negligible
probability. Define an algorithm B that generates a random input m, gives it to A,
receives m′ from A and returns (m,m′). Algorithm B produces collision with the
same probability as A produces second-preimage.

(b) Suppose we have an algorithm A that, upon input the hash of a message
h = H(m), is able to produce a preimage m′ such that H(m′) = h with non-
negligible probability. Define an algorithm B that, until it finds a collision (m,m′),
generates a random input m, gives h = H(m) to A, and upon answer m′ from A
checks if m = m′. As the input set is larger than the output set, A will eventually
produce m′ 6= m, and B will return the collision (m,m′).2

4 Hardness of the Representation Problem

In this section, we give arguments for the hardness of the representation problem
Problem 2 in the light of known attacks against ZT hash function. These attacks
may be classified as follows:

– Density attacks [24].
– Subgroup attacks [6,20].
– Geiselmann’s attack involving discrete logarithm computations [11].
– Trapdoor attacks [20].

The representation problem has certainly not been studied as much as say, the
discrete logarithm problem or the factorization problem. However, since the pub-
lication of ZT hash in CRYPTO’94, all the attacks against it concern particular
weak parameters, or involve partial exhaustive searches or the computation of dis-
crete logarithms. The only exception is the trapdoor attacks, but trapdoors can be
avoided easily by standard methods.

4.1 Density attacks

An earlier version of the ZT scheme, proposed by Zémor in [24], was based on

the Cayley graph of SL(2, Fp) with generators S =
{

S0 =
(

1 1
0 1

)
, S1 =

(
1 0
1 1

)}
.

The scheme was shown to be subject to a so-called density attack and replaced by
Zémor and Tillich for the ZT function of Section 2.2. The density attack lifts the
representation problem form Zp to the integers, where it can be solved using the
Euclidean algorithm. The density attack chooses a matrix U ∈ SL(2, Z) that reduces
to the identity modulo p, and then find its factorization as products of S0 and S1.
The attack worked well for this scheme because any positive matrix of SL(2, Z) can
be factorized as products of S0 and S1, and because U can be adequately chosen
such that its factorization will be small [22].

A density attack on the ZT hash would require lifting the factorization problem onto
SL(2, F2[X]), that is finding a matrix U ∈ SL(2, F2[X]) equal to the identity modulo
Pn(X), and if possible, expressing U as a product of Zémor-Tillich generators A0 =(

X 1
1 0

)
and A1 =

(
X X + 1
1 1

)
. The attack does not work for ZT scheme because a

random matrix U ∈ SL(2, F2[X]) has a very small probability to be a product of A0

and A1, that is, the set generated by A0 and A1 is not dense enough in SL(2, F2[X])
[22].

A density attack on LPS hash would require lifting the factorization problem
onto SL(2, Z). Each generator Gj of Section 2.2 would be divided by a square root
of l (to have determinant 1), then lifted to the integers. A priori, each lifted matrix
G̃j has entries of size about the size of p, that is, they are large integers. If all the
lifts chosen are positive matrices, then their (unique) factorizations with positive

exponents G̃j = S
qj,1
0 S

qj,2
1 S

qj,3
0 ...S

qj,m

1 clearly show that the space generated by the
G̃j is a very small subset of the set of positive matrices of SL(2, Z).

Similarly, a density attack on Morgenstern hash would require lifting the fac-
torization problem onto SL(2, F2[X]). Each generator Gj of Section 2.3 would be
divided by a square root of X + 1 (to have determinant 1), then lifted to matrices
G̃j ∈ SL(2, F2[X]). Again, as the entries of the G̃j are expected to have large degree,
the subset of SL(2, F2[X]) generated by the lifts will be very small.

The arguments above do not totally discard density attacks on Cayley hashes. The
matrix U reducing to identity could maybe be chosen better than randomly. Other
lifts of the generators could be considered, including more than one lift per generator
and (in LPS hash) lifts with negative coefficients. We have tried these approaches
but the ZT, LPS and Morgenstern hash seem resistant to it.

4.2 Subgroup attacks

Two subgroup attacks Looking at the ZT hash function, it is easy to derive short
relations like A1A

−1
0 A1 = A0 involving A0, A1 and A−1

0 , which hold for any poly-
nomial Pn(X). In the first attack paper against ZT hash, Charnes and Pieprzyk [6]
derive conditions for particular parameters Pn(X) making the order r0 of A0 small,
resulting in a short collision A1A

r0−1
0 A1 = A0.

At CRYPTO 2000, Steinwandt, Grassl, Geiselmann and Beth considerably re-
strict the set of parameters suitable for Zémor-Tillich hash [20]. They show that
if n is not prime, and if Pn(X) can be expressed as a functional decomposition
Pn(X) = g(h(X)), deg(g) = n1 < n, deg(h) = n2 = n/n1, then a subgroup attack
may be practical. The idea is that a bit sequence whose hash is a matrix M of
small order, may always be repeated to give a collision with the void message. In
particular, the matrices in the subgroup SL(2, F2n1) of SL(2, F2n), or in one of its
conjugate subgroups, have an order smaller than 2n1 + 1, and as shown by Stein-
wandt et al., these matrices are exactly the ones whose trace is an element of F2n1 .
The attack then works as follows: 2n2 hash matrices are successively computed; the
trace of each matrix is evaluated; it is checked whether the trace is in F2n1 ; and
when such a matrix is found, a collision with the void message is derived.

Subgroup attacks show that the representation problem may be easy for particu-
lar parameters. The attacks exploit a lack of specification in Zémor-Tillich’s paper,
where no restriction was put on the irreducible polynomial Pn(X) but on the ap-
proximate size of its degree. Indeed, Abdukhalinov and Kim [3] showed that the
Charnes-Pieprzyk conditions are very unlikely (with probability less than 10−27) to
be satisfied for randomly chosen parameter Pn(X), so this attack will be discarded
by fixing the polynomial in some way. As Steinwandt et al. attack comprises an
(exponentially long) exhaustive search, the increase of n from 130 − 170 to about
1024 protects ZT hash against it.

Still, we can worry about other, more sophisticated subgroup attacks. Indeed,
suppose that there is a sequence of subgroups {Id} ⊂ G1 ⊂ G2... ⊂ Gk = G where

G is the group associated to ZT, LPS or Morgenstern hash and that the membership
of a matrix in one of the Gi can be easily tested. An attack could try to recursively
construct a small set Sk−1 of elements of Gk−1 from the elements of S, a small subset
Sk−2 of Gk−2 from the elements of Sk−1, etc. If all the ratios |Gi|/|Gi−1| are small
enough the sets Si may be constructed by exhaustive searches, and a representation
of identity of length smaller than k maxi |Gi|/|Gi−1| can be derived.

The order of |PSL(2, Fpn)| is pn(p2n−1)
gcd(p−1,2) and 80 bits is currently believed to be

out of reach by exhaustive search methods. The conditions we put in Section 2
on the parameters of ZT, LPS and Morgenstern hashes therefore prevent possible
subgroups attacks.

4.3 Geiselmann’s attack

The key of Geiselmann’s attack is the following proposition, applied at A0 =
(

X 1
1 0

)
and A1 =

(
1 1
0 1

) (
X + 1 1

1 0

) (
1 1
0 1

)
.

Proposition 3 [11] Let A =
(

α 1
1 0

)
∈ SL(2, F2n) and Â(X) := X2 + αX + 1 ∈

F2n [X].

– If Â(X) is irreducible, a matrix M ∈ F2×2
2n is a power of A if and only if M =

λA + µI for some λ, µ ∈ F2n , det(M) = 1 and Mord(A) = I.
– If Â(X) factorizes into Â(X) = (X + β)(X + β−1), a matrix M ∈ F2×2

2n is a
power of A if and only if M = λA + µI for some λ, µ ∈ F2n , det(M) = 1 and
(λβ + µ)ord(A) = 1.

The attack works in three steps:

1. A matrix C ∈ SL2(F2n) is chosen and a matrix equation of the form Ae1
0 Ae2

1 ...Ael
0 =

(λ1A0 + µ1I)(λ2A1 + µ2I)...(λlA0 + µlI) = C is considered, with l = 3 or 4.
2. The matrix equation gives four polynomial equations with unknown µi, λi ∈

F2n , i = 1...l. After adding three or four equations for the conditions on the
determinants the system is solved. In general, it has solutions.

3. Conditions with the orders are checked. If they are not fulfilled, another matrix
C is selected, otherwise the exponents ei are recovered as the discrete logarithms
of the matrices λ1A0 + µ1I, λ2A1 + µ2I, etc.

Similar attacks on LPS and Morgenstern hashes Geiselman’s attack can easily be
adapted for LPS and Morgenstern hash. Here, we develop the attack on LPS hash

with l = 5. Let ω = 1−2i
1+2i and Λ =

(
1 0
0 ω

)
∈ PSL(2, Fp). The matrix equation

Ge1
i1

Ge2
i2

...Gel
il

= C translates to a system of four equations with unknowns x0, x1 =
ωe1 , x2 = ωe2 ,... xl = ωel . Indeed, the generators Gj factorize as

G1 =
(

1 + 2i 0
0 1− 2i

)
=

(
1 0
0 ω

)
= Λ,

G−1 =
(

1− 2i 0
0 1 + 2i

)
=

(
1 0
0 ω−1

)
= Λ−1,

G2 =
(

1 2
−2 1

)
=

(
1 1
i −i

) (
1 0
0 ω

) (
1 −i
1 i

)
:= P−1

2 ΛP2,

G−2 =
(

1 −2
2 1

)
=

(
1 1
i −i

) (
1 0
0 ω−1

) (
1 −i
1 i

)
:= P−1

2 Λ−1P2,

G3 =
(

1 2i
2i 1

)
=

(
1 1
1 −1

) (
1 0
0 ω

) (
1 1
1 −1

)
:= P−1

3 ΛP3,

G−3 =
(

1 −2i
−2i 1

)
=

(
1 1
1 −1

) (
1 0
0 ω−1

) (
1 1
1 −1

)
:= P−1

3 Λ−1P3.

As a consequence, any power Gei
ij

writes down as P−1
ij

ΛeiPij and the entries of M =
Ge1

i1
Ge2

i2
...Gel

il
are easily written as polynomials in x1, x2,... xl. Finally, four equations

Ma,b = x0Ca,b with a, b = 1, 2 are deduced from the system Ge1
i1

Ge2
i2

...Gel
il

= C.

Practicability The size of a collision produced by Geiselmann’s attack is about lE
where E is an upper bound on the exponents ei. Assuming in a first approximation
that the products Ae1

0 Ae2
1 ...Ael

0 with e1, e2, ...el ≤ E are all distinct in SL(2, F2n),
the expected number of matrices C to be tested before getting one preimage is about
23n/El so E must be about 23n/l and the collision size will be about l23n/l. With
the new parameters n ≈ 1024 we recommend for the ZT hash, not only the collision
would be much too large but the attack would require solving discrete logarithm in
the field F22048 , which may be assumed to be a hard problem from Cryptographic
practice.

To avoid the discrete logarithm computation, the following strategy can be con-
sidered: recover ei only if it is smaller than a bound E, which can be done by an
exhaustive precomputation of matrices Ae

0 and Ae
1, e = 1, 2, ...E. In accordance with

the above arguments, l should be chosen as l ≈ 3n
log2 E . Considering the limit of

precomputation power to be E = 240, n ≈ 1024 gives l ≈ 25. The drawback with
this approach is that it increases the number of unknowns without adding equations
to the system to be solved. As a consequence, the second step of Geiselmann attack
would give a lot of useless solutions and become very difficult. Moreover, the best
methods known to solve general polynomial systems are Groëbner basis algorithms,
which are exponentially slow in the number of variables.

4.4 Trapdoor attacks

A trapdoor is a weakness that is intentionally introduced on a system, which allows
the person who knows it to break the algorithm much faster. Steinwandt et al. [20]
showed how to choose Zémor-Tillich parameters to make any sufficiently long given
message m = (m1,m2...ml) collide with the void message. Namely, the product

H(m) = Am1Am2 ...Aml
:=

(
p1(X) p2(X)
p3(X) p4(X)

)
is computed in SL(2, Z) and Pn(X) is

chosen as an irreducible polynomial dividing gcd(p1(X)−1, p2(X), p3(X), p4(X)−1).
Similar trapdoors can be constructed for LPS and Morgenstern hashes. The

possible existence of trapdoors is an actual concern in cryptographic applications
because people would need to trust the person who chooses the parameters that she
did not cheat. However, as we already said trapdoors can be avoided by standard
techniques, for example by including a universal constant like π in the definition of
the parameters.

5 Efficiency

Speeding up the computation The main part of the Cayley hash computations are
the matrix products (one per step), especially as the message lengths increase. A
matrix product usually costs 8 field multiplications and 4 field additions, but the
special form of our Cayley generators allows removing all the field multiplications.

In ZT hash, multiplying a generic matrix M =
(

a b

c d

)
by A0 =

(
X 1
1 0

)
or A1 =(

X X + 1
1 1

)
only requires 2 one-bit shifts and at most 6 XOR operations on 1024

bits words. In LPS hash, the product of a matrix

M =
(

a0 + a1i b0 + b1i
c0 + c1i d0 + d1i

)
with a generator Gj is, by using i2 + 1 ≡ 0 mod p,

MGj =


(a0g0,j − a1g1,j − b0g2,j − b1g3,j) (a0g2,j − a1g3,j + b0g0,j + b1g1,j)

+i(a0g1,j + a1go,j + b0g3,j − b1g2,j) +i(a0g3,j + a1g2,j − b0g1,j + b1g0,j)
(c0g0,j − c1g1,j − d0g2,j − d1g3,j) (c0g2,j − c1g3,j + d0g0,j + d1g1,j)

+i(c0g1,j + c1go,j + d0g3,j − d1g2,j) +i(c0g3,j + c1g2,j − d0g1,j + d1g0,j)

 .

As all gi,j are smaller than
√

l (for l = 5, g0 = 1 and one of g1, g2, g3 is ±2),
this product can be computed with a few field additions and shifts. The LPS step
computation is significantly sped up with these formulae, at the only expense of
doubling the internal memory usage and a few additional field operations in the
final mapping. The same trick can be used to compute a Morgenstern hash step
with only XORs and one-bit shifts, that is, very efficient operations.

Implementation results We implemented ZT, LPS and Morgenstern hash functions
on a 32-bit 3.20GHz Pentium 4 using the GMP C library. The parameters we used
are : a random irreducible polynomial Pn(X) of degree 1024 for ZT, l = 5 and a
random prime p of 1024 bits for LPS, q = 2 and a random polynomial g(X) of degree
1024 for Morgenstern. We also implemented LPS with field multiplications (that is,
without the trick above) to compare fairly with [5]. The bandwidths we obtain are
1.4MbHz for ZT, 733kbHz for LPS (83kbHz when we do field multiplications), and
613kbHz for Morgenstern hash function. An evaluation of the Morgenstern hash
function (with q = 2) was also achieved for a XILINX VIRTEX4 FPGA, with a
bandwidth of 360MbHz.

Cayley hashes are exceptionally fast in hardware and comparable to other prov-
able hashes in software. Indeed, the best SHA-2 implementations on FPGA are
currently below 1.8GbHz [7], that is only 5 times faster than Morgenstern hashes.
The exceptional speed of Morgenstern (and ZT) hash in hardware comes from the
simplicity of the step formulae that involve only XORs and one-bit shifts. In soft-
ware, 1024-bit operations are sequentially decomposed into 32− or 64−bit opera-
tions, hence an efficiency lost. With the above trick, the computation of LPS hash
is performed between 5 and 9 times faster than in [5] (145kbHz on a 64−bit plat-
form). Still, Cayley hashes are currently a bit slower in software than other provable
hashes, and far from the 500MbHz rates easily obtained for the SHA family. The
VSH function [9] achieves rates of about 3.2MbHz while a fast variant of it runs a
bit faster than 8MbHz (but involve a large amount of precomputation and storage).
The fastest (but less secure) version of the FFT hashing scheme [17] runs at about
5.4MbHz.

Optimizations We are currently working on in many ways of accelerating Cayley
hashes computation. Special parameters like generalized Mersenne’s primes for LPS
hashes or trinomials for ZT and Morgenstern hashes will speed up the computation
by more than 50% as the field reductions would then be done for free. The two rows
of each matrix can be computed in parallel and using associativity of the matrix
product, long messages can also be decomposed in blocks treated separately. We
believe that many improvements remain to be done and could together lead to a
speed-up of a factor 10.

6 Current and Further Work

Cayley hashes raise many problems of different types, that include:

– Finding the best parameter sets for security (making subgroup attacks as un-
likely as possible) as well as efficiency (making some parts of the computation
easier).

– Considering the malleability problem which is the main drawback in our ap-
proach: roughly, from the hashes of two messages m1 and m2 it is easy to com-
pute the hash of a related message, namely m1||m2. To remove this property,
we are considering the hash function H̃(m) = π2 ◦H ◦ π1 ◦ π2 ◦H ◦ π1(m). The

function H̃ enjoys the security properties of H and can be computed in at most
twice the same time; we want to provide arguments for its non-malleability.

– Replacing matrices by vectors: the idea is to compute only one row of the matri-
ces that are the outputs of the Cayley hashes, starting from (1, 0) or (0, 1). For
LPS hash, this approach corresponds to using the graphs Yl,p rather than the
graphs Xl,p of [16]. The new graphs enjoy expansion properties deduced from
the previous ones. Whether the corresponding representation problem becomes
easier or not is an open question.

7 Conclusion

Cayley hashes are elegant cryptographic hash functions constructed from Cayley
graphs. In this paper, we have reviewed two previous instances (the ZT and LPS
hashes) and proposed a new one based on Morgenstern’s Ramanujan graphs. The
expanding properties of Cayley graphs guaranty the uniform distribution of outputs,
while the collision and preimage resistance follows from a hardness hypothesis on
a representation problem in simple linear groups. We have given arguments for the
hardness of these problems, based on existing attacks against the ZT hash function.

In this paper, we also showed that Cayley hashes can be made very efficient in
hardware and comparable to other provable hashes in software. Indeed, our new
Morgenstern hash is currently only 5 times slower than the best hardware imple-
mentations of SHA-256, and we are aware of methods and tricks to develop much
faster implementations. Most importantly, Cayley hashes can be parallelized easily
which will allow even better performances.

The drawback of the parallel property is that it comes with some malleability in
the hash function. In Section 6, we proposed a heuristical way to avoid malleability.
We hope the very nice properties of Cayley hashes will stimulate research on this
question as well as on the hardness of the representation problem.

References

1. http://www.csrc.nist.gov/groups/ST/hash/sha-3/index.html.

2. Fips 180-2 secure hash standard.

3. K. S. Abdukhalikov and C. Kim. On the security of the hashing scheme based on
SL2. In FSE ’98: Proceedings of the 5th International Workshop on Fast Software
Encryption, pages 93–102, London, UK, 1998. Springer-Verlag.

4. N. Alon and V. Milman. λ1, isoperimetric inequalities for graphs, and superconcen-
trators. Journal of Combinatorial Theory, series B, 38:73–88, 1985.

5. D. X. Charles, E. Z. Goren, and K. E. Lauter. Cryptographic hash functions from
expander graphs. Cryptology ePrint Archive: Report 2006/021, available from http:

//eprint.iacr.org/2006/021.pdf.

6. C. Charnes and J. Pieprzyk. Attacking the SL2 hashing scheme. In ASIACRYPT
’94: Proceedings of the 4th International Conference on the Theory and Applications
of Cryptology, pages 322–330, London, UK, 1995. Springer-Verlag.

7. R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis. Improving SHA-2 hardware
implementations. In L. Goubin and M. Matsui, editors, CHES, volume 4249 of Lecture
Notes in Computer Science, pages 298–310. Springer, 2006.

8. P. Chiu. Cubic Ramanujan graphs. Combinatorica, 12:275–285, 1992.
9. S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an efficient and provable collision-

resistant hash function. In S. Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture
Notes in Computer Science, pages 165–182. Springer, 2006.

10. J. Dodziuk. Difference equations, isoperimetric inequality, and transience of certain
random walks. Transactions of the American Mathematical Society, 284:787–794, 1984.

11. W. Geiselmann. A note on the hash function of Tillich and Zémor. In D. Gollmann,
editor, Fast Software Encryption, volume 1039 of Lecture Notes in Computer Science,
pages 51–52. Springer, 1996.

12. O. Goldreich. Fundations of Cryptography, Volume II Basic Applications. Cambridge
University Press, 2004.

13. S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull.
Amer. Math. Soc., 43:439–561, 2006.

14. J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc
Cryptography and Network Security Series). Chapman & Hall/CRC, 2007.

15. J. Lafferty and D. Rockmore. Numerical investigation of the spectrum of certain
families of Cayley graphs, 1993.

16. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8:261–
277, 1988.

17. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Provably secure FFT
hashing. In NIST 2nd Cryptogaphic Hash Workshop, 2006.

18. M. Morgenstern. Existence and explicit construction of q+1 regular Ramanujan graphs
for every prime power q. Journal of Combinatorial Theory, B 62:44–62, 1994.

19. P. Sarnak. Some Applications of Modular Forms. Cambridge University Press, 1990.
20. R. Steinwandt, M. Grassl, W. Geiselmann, and T. Beth. Weaknesses in the SL2(F2n

hashing scheme. In Proceedings of Advances in Cryptology - CRYPTO 2000: 20th
Annual International Cryptology Conference, 2000.

21. J.-P. Tillich and G. Zémor. Hashing with SL2. In Y. Desmedt, editor, CRYPTO,
volume 839 of Lecture Notes in Computer Science, pages 40–49. Springer, 1994.

22. J.-P. Tillich and G. Zémor. Group-theoretic hash functions. In Proceedings of the
First French-Israeli Workshop on Algebraic Coding, pages 90–110, London, UK, 1993.
Springer-Verlag.

23. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In V. Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17–36.
Springer, 2005.

24. G. Zémor. Hash functions and Cayley graphs. Des. Codes Cryptography, 4(4):381–394,
1994.

