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Physical Security

I Security is usually proved in an idealized model

I While implemented, many secure cryptographic protocols
are vulnerable to side-channel attacks (SC)

I Issue : partial information on the SECRET is leaked by
physical media

I By recovering many pieces of partial info, one can recover
the whole secret key
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Physical Security

I How to deal with leakages ?
I (Try to) remove them by electronic countermeasures

(masking, noise addition, dual-rails,...)

I Assume some perfect component (e.g. Katz’
non-tamperable device)

I Re-design algorithms
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Physical Security

I Re-design algorithms
I Do not only prevent leakages from occuring
I Make their combination hard

I Model the leakages
I Micali-Reyzin model

I Case Study : Pseudo-Random Number Generator (PRNG)
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Case Study: PRNG

I Black-Box security (BB) : PRNG

I Grey-Box security (GB): prevent traditional SC cryptanalysis
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Talk Overview

I Introduction
I PRNG

I Construction
I BB model & security
I GB model & security
I PRNG summary

I Conclusion and further work
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Construction

 
 

 

 

 
 

 

 

I (Public IV, secret keys)

I First idea (in BB): if E1 and E2 are “good”, then the yi ’s
should be PRNs.

I But (in GB) successive leakages allow recovering the whole
secret.
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The construction

 
 

 

 

 
 

 

 

I So key update : ki+1 = ki ⊕mi and k∗
i+1 = k∗

i ⊕mi

I Each running key ki , k
∗
i is used to encrypt only one message.
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Black-Box Model

I Ideal cipher model E : K ×M→M
I (Here K =M)
I for each key k ∈ K, the function Ek(·) = E(k, ·) is a

random permutation onM
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Black-Box Model

I PRNG :
I Deterministic algorithm G : K → K̂ (with |K| < |K̂|)

I For any adversary A : K̂ → {0, 1}, let

Succ
prng−1
G,A = Pr[A(k̂) = 1 : k̂

R←− K̂],

Succ
prng−0
G,A = Pr[A(k̂) = 1 : k̂ ← G(k); k

R←− K],

Adv
prng
G,A = |Succ

prng−1
G,A − Succ

prng−0
G,A |.

I G is a PRNG if for any A, Adv
prng
G,A ≈ 0.
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Black-Box Analysis

 
 

 

 

 
 

 

 

I Proof: study security of one round and extend it to multiple
rounds by “hybrid argument”

 
 

 

 

 
 

 

 

I For each X ∈M = K, let GX : K ×K → K×K ×K

GX (K , K ∗) = (EK (X )⊕ K , EK (X )⊕ K ∗, EK∗(EK (X ))).
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Black-Box Analysis

I Security of a single round
By definition,

Succ
prng−0
GX ,A = Pr[A(k̂) = 1 : (k , k∗)

R←− K×K;

k̂ ← GX (k , k∗)]

Recalling what GX (k , k∗) is,
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Black-Box Analysis

I Security of Gq (q rounds of G): hybrid argument
I Consider hybrid algorithms on q rounds

I The i th hybrid has i single G rounds, followed by q − i
rounds of truly random generators

I The i + 1th hybrid differs from the i th hybrid only by one
round

I If there is A such that Adv
prng
Gq ,A > ε, then there is A′ such

that Adv
prng
G,A′ > ε

q for one of the rounds
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Grey-Box Model

I Now recall that physical means leak information on the keys

I Implementation = algorithm + (probabilistic) leakage
function of the keys
Pq(K , K ∗) = (Gq(K , K ∗), Lq(K , K ∗))

I We show the available information does not permit
recovering the secret
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Grey-Box Model

I Side-channel key recovery adversary

Succsc−kr−δ(K ,K∗)
Pq(K ,K∗),A = Pr[A(Pq(k , k∗)) = δ(k , k∗) :

k
R←− K; k∗ R←− K]

δ(K , K ∗) is part of the key (e.g., 1 byte)

I If δ(K , K ∗) = K[0···7]

Succsc−kr−K
Pq(K ,K∗),A = (Succ

sc−kr−K[0···7]
Pq(K ,K∗),A )n/8
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Grey-Box Model

I Assumptions :
I Fixed IV
I Leakages on the mi ’s, ki ’s (and k∗

i ’s)
I Cannot be related but by the rekeying relations

k j
i+1 = k j

i ⊕mi
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Grey-Box Model
 

 

 

 

 
 

 

 

I Additional assumptions
I Iterative BC, no key schedule
I The adversary targets first round key L(ki ) = L(k0

i )
I Form of leakage functions : HW, GHW, NI
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Grey-Box Analysis

I With observed leakages lq = {L(ki), L(mi)} and relations
ki+1 = ki ⊕mi , the best guess is

kguess := arg max
k

Pr[K = k |Lq = lq]

I We derive formulae for the success rate

Succsc−kr−K0

Pq(K ,K∗),A = f (q, {L(ki), L(mi)})

I Goal : show that SR remains small as q increases
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Hamming Weight Leakages

I Hamming weight leakages L(x) = WH(x) =
∑

i xi

I (relevant in power consumption measures)

I In this case we compute : Succsc−kr−K0

Pq(K ,K∗),A = n+1
2n

I High security, independently of q
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Noisy Identity Leakages

I Here the above formulae are hard to evaluate analytically
→ Monte-Carlo simulations
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PRNG Summarized

I BB : secure in the ideal cipher model

I GB : SC Key Recovery prevented by the rekeying process
Some practically relevant leakages are investigated and
SR � 1 even if q increases
With other countermeasures, leakages on more rounds
means better attack
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Conclusion and Further Work

I Re-design strategy
to be used with other countermeasures

I Need of theoretical framework for SC
I unify BB and GB...
I define physical primitives
I compose primitives
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Secure initialization of the
PRNG with a public seed

E1 E2mi
IV0

ki ki*

yi
xi

ki+1 = ki        mi  ki+1 = ki        mi  * *

IV1

r(i)

zi
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Grey-Box Model

I Assumptions :
I Fixed IV (removed further)
I Leakages on the mi ’s, ki ’s (and k∗

i ’s)
I Cannot be related but by the rekeying relations

k j
i+1 = k j

i ⊕mi
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Grey-Box Model  
 

 

 

 
 

 

 

I Additional assumptions
I Iterative BC, no key schedule
I The adversary targets first round key L(ki ) = L(k0

i ))
I Form of leakage functions : HW, GHW, NI
I We suppose Bayesian adversary
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Discussion about Grey-Box assumptions

I Many assumptions
I make the proofs cleaner...
I ...but are not essential.

I Relaxations → same qualitative conclusions
I key schedule → adapt the leakage model L(ki )
I targeting not only the first iteration of the PRNG
→ may increase SR, but qualitative results remains
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