A Block Cipher Based Pseudo Random Number Generator Secure against Side-Channel Key Recovery

Christophe Petit¹, François-Xavier Standaert¹, Olivier Pereira¹, Tal G. Malkin², Moti Yung²

¹UCL Crypto Group, Université catholique de Louvain. ² Dept. of Computer Science, Columbia University.

Security is usually proved in an idealized model

- Security is usually proved in an idealized model
- ► While implemented, many secure cryptographic protocols are vulnerable to side-channel attacks (SC)

- Security is usually proved in an idealized model
- While implemented, many secure cryptographic protocols are vulnerable to side-channel attacks (SC)
 - Issue : partial information on the SECRET is leaked by physical media

- Security is usually proved in an idealized model
- ► While implemented, many secure cryptographic protocols are vulnerable to side-channel attacks (SC)
 - Issue : partial information on the SECRET is leaked by physical media
 - By recovering many pieces of partial info, one can recover the whole secret key

- ▶ How to deal with leakages ?
 - ► (Try to) remove them by electronic countermeasures (masking, noise addition, dual-rails,...)

- ▶ How to deal with leakages ?
 - (Try to) remove them by electronic countermeasures (masking, noise addition, dual-rails,...)
 - Assume some perfect component (e.g. Katz' non-tamperable device)

- ▶ How to deal with leakages ?
 - (Try to) remove them by electronic countermeasures (masking, noise addition, dual-rails,...)
 - Assume some perfect component (e.g. Katz' non-tamperable device)
 - ► Re-design algorithms

- ► Re-design algorithms
 - ► Do not only prevent leakages from occuring
 - ▶ Make their combination hard

- ▶ Re-design algorithms
 - Do not only prevent leakages from occuring
 - Make their combination hard
 - Model the leakages
 - Micali-Reyzin model

- ► Re-design algorithms
 - Do not only prevent leakages from occuring
 - Make their combination hard
 - Model the leakages
 - Micali-Reyzin model
 - Case Study : Pseudo-Random Number Generator (PRNG)

Case Study: PRNG

- ▶ Black-Box security (BB) : PRNG
- Grey-Box security (GB): prevent traditional SC cryptanalysis

Talk Overview

- ► Introduction
- PRNG
 - Construction
 - BB model & security
 - GB model & security
 - PRNG summary
- Conclusion and further work

Construction

► (Public IV, secret keys)

Construction

- ► (Public IV, secret keys)
- ▶ First idea (in BB): if E_1 and E_2 are "good", then the y_i 's should be PRNs.

Construction

- (Public IV, secret keys)
- ▶ First idea (in BB): if E_1 and E_2 are "good", then the y_i 's should be PRNs.
- ▶ But (in GB) successive leakages allow recovering the whole secret.

The construction

• So key update : $k_{i+1} = k_i \oplus m_i$ and $k_{i+1}^* = k_i^* \oplus m_i$

The construction

- So key update : $k_{i+1} = k_i \oplus m_i$ and $k_{i+1}^* = k_i^* \oplus m_i$
- ▶ Each running key k_i , k_i^* is used to encrypt *only* one message.

- ▶ Ideal cipher model $E : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{M}$
 - (Here $\mathcal{K} = \mathcal{M}$)
 - ▶ for each key $k \in \mathcal{K}$, the function $\mathsf{E}_k(\cdot) = \mathsf{E}(k, \cdot)$ is a random permutation on \mathcal{M}

- ► PRNG:
 - ▶ Deterministic algorithm $G: \mathcal{K} \to \hat{\mathcal{K}}$ (with $|\mathcal{K}| < |\hat{\mathcal{K}}|$)

- PRNG :
 - ▶ Deterministic algorithm G : $\mathcal{K} \to \hat{\mathcal{K}}$ (with $|\mathcal{K}| < |\hat{\mathcal{K}}|$)
 - ▶ For any adversary $A: \hat{\mathcal{K}} \rightarrow \{0,1\}$, let

$$\begin{split} & \textbf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathrm{prng}-1} &= & \mathsf{Pr}[\mathsf{A}(\hat{k}) = 1 : \hat{k} \xleftarrow{R} \hat{\mathcal{K}}], \\ & \textbf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathrm{prng}-0} &= & \mathsf{Pr}[\mathsf{A}(\hat{k}) = 1 : \hat{k} \leftarrow \mathsf{G}(k); k \xleftarrow{R} \mathcal{K}], \\ & \textbf{Adv}_{\mathsf{G},\mathsf{A}}^{\mathrm{prng}} &= & | \textbf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathrm{prng}-1} - \textbf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathrm{prng}-0} |. \end{split}$$

- PRNG :
 - ▶ Deterministic algorithm $G: \mathcal{K} \to \hat{\mathcal{K}}$ (with $|\mathcal{K}| < |\hat{\mathcal{K}}|$)
 - ▶ For any adversary $A: \hat{\mathcal{K}} \rightarrow \{0,1\}$, let

$$\begin{split} & \textbf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathsf{prng}-1} &= \mathsf{Pr}[\mathsf{A}(\hat{k}) = 1 : \hat{k} \xleftarrow{R} \hat{\mathcal{K}}], \\ & \textbf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathsf{prng}-0} &= \mathsf{Pr}[\mathsf{A}(\hat{k}) = 1 : \hat{k} \leftarrow \mathsf{G}(k); k \xleftarrow{R} \mathcal{K}], \\ & \textbf{Adv}_{\mathsf{G},\mathsf{A}}^{\mathsf{prng}} &= |\mathbf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathsf{prng}-1} - \mathbf{Succ}_{\mathsf{G},\mathsf{A}}^{\mathsf{prng}-0}|. \end{split}$$

• G is a PRNG if for any A, $\mathbf{Adv}_{\mathsf{G},\mathsf{A}}^{\mathsf{prng}} \approx 0$.

► Proof: study security of one round and extend it to multiple rounds by "hybrid argument"

Proof: study security of one round and extend it to multiple rounds by "hybrid argument"

► For each $X \in \mathcal{M} = \mathcal{K}$, let $G_X : \mathcal{K} \times \mathcal{K} \to \mathcal{K} \times \mathcal{K} \times \mathcal{K}$ $G_X(\mathcal{K}, \mathcal{K}^*) = (E_{\mathcal{K}}(X) \oplus \mathcal{K}, E_{\mathcal{K}}(X) \oplus \mathcal{K}^*, E_{\mathcal{K}^*}(E_{\mathcal{K}}(X))).$

 Security of a single round By definition,

$$\begin{array}{ll} \mathbf{Succ}^{\mathrm{prng}-0}_{\mathsf{G}_X,\mathsf{A}} &=& \mathsf{Pr}[\mathsf{A}(\hat{k}) = 1 : (k,k^*) \xleftarrow{R} \mathcal{K} \times \mathcal{K}; \\ & \hat{k} \leftarrow \mathsf{G}_X(k,k^*)] \end{array}$$

 Security of a single round By definition,

$$\mathbf{Succ}_{\mathsf{G}_{X},\mathsf{A}}^{\mathsf{prng}-0} = \mathsf{Pr}[\mathsf{A}(\hat{k}) = 1 : (k, k^{*}) \stackrel{R}{\leftarrow} \mathcal{K} \times \mathcal{K};$$
$$\hat{k} \leftarrow \mathsf{G}_{X}(k, k^{*})]$$

Recalling what $G_X(k, k^*)$ is,

Security of a single round Recalling what $G_X(k, k^*)$ is,

$$\mathbf{Succ}_{\mathsf{G}_{X},\mathsf{A}}^{\mathsf{prng}-0} = \mathsf{Pr}[\mathsf{A}(k_{1},k_{1}^{*},y) = 1:$$

$$k \overset{R}{\leftarrow} \mathcal{K}; k^{*} \overset{R}{\leftarrow} \mathcal{K};$$

$$m \leftarrow \mathsf{E}_{k}(X);$$

$$k_{1} \leftarrow m \oplus k; k_{1}^{*} \leftarrow m \oplus k^{*};$$

$$y \leftarrow \mathsf{E}_{k^{*}}(m)]$$

Security of a single round Recalling what $G_X(k, k^*)$ is,

Succ_{G_X,A}^{pring-0} = Pr[A(k₁, k₁*, y) = 1:

$$k \stackrel{R}{\leftarrow} \mathcal{K}; k^* \stackrel{R}{\leftarrow} \mathcal{K};$$

 $m \leftarrow E_k(X);$
 $k_1 \leftarrow m \oplus k; k_1^* \leftarrow m \oplus k^*;$
 $y \leftarrow E_{k^*}(m)$]

Now using the ideal cipher model for E_k and E_{k*} ,

Security of a single round Now using the ideal cipher model for E_k and E_{k^*} ,

Succ_{G_X,A}^{prng-0} = Pr[A(k₁, k₁*, y) = 1 :

$$k \stackrel{R}{\leftarrow} \mathcal{K}; k^* \stackrel{R}{\leftarrow} \mathcal{K};$$

 $P \stackrel{R}{\leftarrow} Perm(\mathcal{K}); P^* \stackrel{R}{\leftarrow} Perm(\mathcal{K});$
 $m \leftarrow P(X);$
 $k_1 \leftarrow m \oplus k; k_1^* \leftarrow m \oplus k^*;$
 $y \leftarrow P^*(m)$]

Security of a single round Now using the ideal cipher model for E_k and E_{k^*} ,

Succ_{G_X,A}^{prng-0} = Pr[A(k₁, k₁*, y) = 1 :

$$k \stackrel{R}{\leftarrow} \mathcal{K}; k^* \stackrel{R}{\leftarrow} \mathcal{K};$$

 $P \stackrel{R}{\leftarrow} Perm(\mathcal{K}); P^* \stackrel{R}{\leftarrow} Perm(\mathcal{K});$
 $m \leftarrow P(X);$
 $k_1 \leftarrow m \oplus k; k_1^* \leftarrow m \oplus k^*;$
 $y \leftarrow P^*(m)$]

Choosing random permutation and then applying to X is equivalent to choosing random element, so

Security of a single round

Choosing random permutation and then applying to X is equivalent to choosing random element, so

$$\mathbf{Succ}_{\mathsf{G}_{X},\mathsf{A}}^{\mathsf{prng}-0} = \mathsf{Pr}[\mathsf{A}(k_{1},k_{1}^{*},y) = 1 : k \overset{R}{\leftarrow} \mathcal{K}; k^{*} \overset{R}{\leftarrow} \mathcal{K}; \\ m \overset{R}{\leftarrow} \mathcal{K}; k_{1} \leftarrow m \oplus k; \\ k_{1}^{*} \leftarrow m \oplus k^{*}; y \overset{R}{\leftarrow} \mathcal{K}]$$

Security of a single round

Choosing random permutation and then applying to X is equivalent to choosing random element, so

$$\mathbf{Succ}_{\mathsf{G}_{X},\mathsf{A}}^{\mathsf{prng}-0} = \mathsf{Pr}[\mathsf{A}(k_{1},k_{1}^{*},y) = 1 : k \overset{R}{\leftarrow} \mathcal{K}; k^{*} \overset{R}{\leftarrow} \mathcal{K}; \\ m \overset{R}{\leftarrow} \mathcal{K}; k_{1} \leftarrow m \oplus k; \\ k_{1}^{*} \leftarrow m \oplus k^{*}; y \overset{R}{\leftarrow} \mathcal{K}]$$

So, each of the inputs of A "looks random"

► Security of a single round So, each of the inputs of A "looks random"

$$\begin{array}{ll} \mathbf{Succ}^{\mathrm{prng}-0}_{\mathsf{G}_{X},\mathsf{A}} & = & \mathsf{Pr}[\mathsf{A}(\mathit{k}_{1},\mathit{k}_{1}^{*},\mathit{y}) = 1 : \mathit{k}_{1} \xleftarrow{R} \mathcal{K}; \mathit{k}_{1}^{*} \xleftarrow{R} \mathcal{K}; \\ & y \xleftarrow{R} \mathcal{K}] \end{array}$$

Security of a single round So, each of the inputs of A "looks random"

$$\begin{array}{ll} \mathbf{Succ}^{\mathrm{prng}-0}_{\mathsf{G}_{X},\mathsf{A}} & = & \mathsf{Pr}[\mathsf{A}(k_{1},k_{1}^{*},y)=1:k_{1} \xleftarrow{R} \mathcal{K};k_{1}^{*} \xleftarrow{R} \mathcal{K};\\ & & y \xleftarrow{R} \mathcal{K}]\\ & = & \mathbf{Succ}^{\mathrm{prng}-1}_{\mathsf{G}_{X},\mathsf{A}} \end{array}$$

- ▶ Security of G^q (q rounds of G): hybrid argument
 - Consider hybrid algorithms on q rounds

- ▶ Security of G^q (q rounds of G): hybrid argument
 - Consider hybrid algorithms on q rounds
 - ► The i^{th} hybrid has i single G rounds, followed by q i rounds of truly random generators

Black-Box Analysis

- ▶ Security of G^q (q rounds of G): hybrid argument
 - Consider hybrid algorithms on q rounds
 - ► The i^{th} hybrid has i single G rounds, followed by q i rounds of truly random generators
 - ▶ The $i + 1^{th}$ hybrid differs from the i^{th} hybrid only by one round

Black-Box Analysis

- ▶ Security of G^q (q rounds of G): hybrid argument
 - ► Consider hybrid algorithms on *q* rounds
 - ► The i^{th} hybrid has i single G rounds, followed by q i rounds of truly random generators
 - ► The $i + 1^{th}$ hybrid differs from the i^{th} hybrid only by one round
 - ▶ If there is A such that $\mathbf{Adv}^{\mathrm{pring}}_{\mathsf{G}^q,\mathsf{A}} > \epsilon$, then there is A' such that $\mathbf{Adv}^{\mathrm{pring}}_{\mathsf{G},\mathsf{A}'} > \frac{\epsilon}{q}$ for one of the rounds

▶ Now recall that physical means leak information on the keys

- Now recall that physical means leak information on the keys
- Implementation = algorithm + (probabilistic) leakage function of the keys P^q(K, K*) = (G^q(K, K*), L^q(K, K*))

- Now recall that physical means leak information on the keys
- Implementation = algorithm + (probabilistic) leakage function of the keys P^q(K, K*) = (G^q(K, K*), L^q(K, K*))
- We show the available information does not permit recovering the secret

Side-channel key recovery adversary

$$\mathbf{Succ}^{\mathrm{sc-kr-}\delta(K,K^*)}_{\mathsf{P}^q(K,K^*),\mathsf{A}} = \mathsf{Pr}[\mathsf{A}(\mathsf{P}^q(k,k^*)) = \delta(k,k^*) : k \overset{R}{\leftarrow} \mathcal{K}; k^* \overset{R}{\leftarrow} \mathcal{K}]$$

 $\delta(K, K^*)$ is part of the key (e.g., 1 byte)

Side-channel key recovery adversary

$$\mathbf{Succ}^{\mathrm{sc-kr-}\delta(K,K^*)}_{\mathsf{P}^q(K,K^*),\mathsf{A}} = \mathsf{Pr}[\mathsf{A}(\mathsf{P}^q(k,k^*)) = \delta(k,k^*) : \\ k \xleftarrow{R} \mathcal{K}; k^* \xleftarrow{R} \mathcal{K}]$$

 $\delta(K, K^*)$ is part of the key (e.g., 1 byte)

• If $\delta(K, K^*) = K_{[0\cdots 7]}$

$$\mathsf{Succ}^{\mathrm{sc-kr-}\mathcal{K}}_{\mathsf{P}^q(\mathcal{K},\mathcal{K}^*),\mathsf{A}} = (\mathsf{Succ}^{\mathrm{sc-kr-}\mathcal{K}_{[0\cdots7]}}_{\mathsf{P}^q(\mathcal{K},\mathcal{K}^*),\mathsf{A}})^{n/8}$$

- Assumptions :
 - Fixed IV
 - ▶ Leakages on the m_i 's, k_i 's (and k_i^* 's)
 - ► Cannot be related but by the rekeying relations $k_{i+1}^j = k_i^j \oplus m_i$

- Additional assumptions
 - ▶ Iterative BC, no key schedule
 - ► The adversary targets first round key $L(k_i) = L(k_i^0)$
 - ► Form of leakage functions : HW, GHW, NI

Grey-Box Analysis

▶ With observed leakages $I^q = \{L(k_i), L(m_i)\}$ and relations $k_{i+1} = k_i \oplus m_i$, the best guess is

$$k_{guess} := \arg\max_{k} \Pr[K = k | \mathbf{L}^{\mathbf{q}} = \mathbf{I}^{\mathbf{q}}]$$

Grey-Box Analysis

▶ With observed leakages $I^q = \{L(k_i), L(m_i)\}$ and relations $k_{i+1} = k_i \oplus m_i$, the best guess is

$$k_{guess} := \arg\max_{k} \Pr[K = k | \mathbf{L}^{\mathbf{q}} = \mathbf{I}^{\mathbf{q}}]$$

We derive formulae for the success rate

$$Succ_{\mathsf{P}^q(K,K^*),\mathsf{A}}^{\mathrm{sc-kr}-K_0} = f(q,\{L(k_i),L(m_i)\})$$

Grey-Box Analysis

▶ With observed leakages $I^q = \{L(k_i), L(m_i)\}$ and relations $k_{i+1} = k_i \oplus m_i$, the best guess is

$$k_{guess} := \arg\max_{k} \Pr[K = k | \mathbf{L}^{\mathbf{q}} = \mathbf{I}^{\mathbf{q}}]$$

We derive formulae for the success rate

$$Succ_{\mathsf{P}^q(K,K^*),\mathsf{A}}^{\mathrm{sc-kr}-K_0} = f(q,\{L(k_i),L(m_i)\})$$

▶ Goal : show that SR remains small as q increases

Hamming Weight Leakages

- ▶ Hamming weight leakages $L(x) = W_H(x) = \sum_i x_i$
- ▶ (relevant in power consumption measures)

Hamming Weight Leakages

- ▶ Hamming weight leakages $L(x) = W_H(x) = \sum_i x_i$
- ► (relevant in power consumption measures)
- ▶ In this case we compute : $Succ_{P^q(K,K^*),A}^{sc-kr-K_0} = \frac{n+1}{2^n}$
- ► High security, independently of *q*

Noisy Identity Leakages

- ► Here the above formulae are hard to evaluate analytically
 - → Monte-Carlo simulations

Noisy Identity Leakages

- ▶ Here the above formulae are hard to evaluate analytically
 → Monte-Carlo simulations
 - 0.5

 AES-128, 8-bit architecture

 0.5

 AES-128, 32-bit architecture

 0.1

 AES-128, 32-bit architecture

 0.2

 AES-128, 32-bit architecture

 0.1

 AES-258, 256-bit architecture

 0.1

 AES-258, 256-bit architecture

 0.1

 AES-258, 278-bit architecture

 0.2

 0.3

 AES-128, 32-bit architecture

 0.5

 AES-128, 32-bit architecture

• Succ_{AES256,A} $\simeq (0.08)^{32} = 2^{-116}$

PRNG Summarized

▶ BB : secure in the ideal cipher model

PRNG Summarized

- ▶ BB : secure in the ideal cipher model
- ▶ GB : SC Key Recovery prevented by the rekeying process Some practically relevant leakages are investigated and $SR \ll 1$ even if q increases

PRNG Summarized

- ▶ BB : secure in the ideal cipher model
- ▶ GB : SC Key Recovery prevented by the rekeying process Some practically relevant leakages are investigated and $SR \ll 1$ even if q increases With other countermeasures, leakages on more rounds means better attack

Conclusion and Further Work

 Re-design strategy to be used with other countermeasures

Conclusion and Further Work

- Re-design strategy to be used with other countermeasures
- Need of theoretical framework for SC
 - unify BB and GB...
 - define physical primitives
 - compose primitives

- Assumptions :
 - Fixed IV (removed further)
 - ▶ Leakages on the m_i 's, k_i 's (and k_i^* 's)
 - ► Cannot be related but by the rekeying relations $k_{i+1}^j = k_i^j \oplus m_i$

- Additional assumptions
 - Iterative BC, no key schedule
 - ▶ The adversary targets first round key $L(k_i) = L(k_i^0)$
 - ► Form of leakage functions : HW, GHW, NI
 - We suppose Bayesian adversary

Discussion about Grey-Box assumptions

- Many assumptions
 - make the proofs cleaner...
 - ...but are not essential.
- ▶ Relaxations → same qualitative conclusions
 - ▶ key schedule \rightarrow adapt the leakage model $L(k_i)$
 - targeting not only the first iteration of the PRNG
 - → may increase SR, but qualitative results remains